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FOREWORD

This is the final report of a study of Hydrogen Fueled Advanced Supersonic

Technology aircraft performed under contract NAS 2-7732 for NASA-Ames

Research Center, Moffett Field, California. The report presents documen-

tation of the substance of the work performed during the six months period,

July through December 1973.

The work was accomplished in two phases. Phase I was a parametric analysis

to determine the effect of different vehicle configurations and design con-

cepts on performance, weight, and cost as a function of design range. Phase

II was a study of a single point-design airplane at a level of depth suffi-

cient to afford a credible basis for comparison with a Jet A-i fueled vehicle

designed for the same mission.

The study was performed within the Science and Technology Branch of the Lockheed-

California Company at Burbank, California, under the direction of G. Daniel

Brewer as study manager. Robert E. Morris was project engineer. Other

principal investigators were:

C. F. Ehrlich aerodynamics

E. L. Bragdon propulsion

H. E. Young design
C. W. Lindblom

R. N. Jensen weights
R. D. Mijares

L. A. Vaughn cost
R. Johnston

R. Sessign stress
I. F. Sakata

R. S. Peyton vehicle synthesis

T. G. Vanderbrug thermodynamics

E. F. Versaw fuel systems

Mr. Charles Castellano, of the Advanced Vehicle Concepts Branch of NASA-Ames

Research Center, was technical monitor for the work.
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SUMMARY

This study has examined the feasibility of supersonic transport aircraft

which use liquid hydrogen as the fuel. In Phase I a parametric analysis

was carried out to determine a preferred configuration among the wide variety

of possibilities that were examined. In Phase II, one vehicle of the selec-

ted configuration was studied to establish an acceptable basic design con-

cept for the vehicle structure, the cryogenic fuel tanks, and the tank ther-

mal protection system. The size, weight, and cwst of this design of hydrogen

fueled AST aircraft were then determined as required for the following

mission capability:

Cruise speed Mach 2.7

Range 7778 km. (4200 n.mi.)

Payload 22,226 kg. (49,000 lb.)

(234 passengers)

Design tradeoffs, and performance and cost sensitivities were then evaluated.

An analysis was made of the environmental compatibility of the hydrogen

fueled aircraft in terms of noise, sonic boom overpressure, and exhaust

emissions. The design was then compared with that of a conventionally fueled

AST airplane designed to the same criteria. The hydrogen fueled aircraft

was found to provide advantages in nearly every category of comparison:

Jet A-1 LH2

Gross Weight (lb.) kg. (750,000) 340,194 (368,000) 166,922

Operating Empty Weight (lb.) kg. (309,700) 140,478 (223,100) 101,196
Fuel Weight (lb.) kg. (391,300) 177,491 ( 95,900) 43,500
Engine Thrust (lb.) newtons ( 89,500) 398,100 ( 46,000) 204,600

Cost
RDT & E $ x 109  428 3.32
Production Aircraft $ x 106 67.33 47.97

Noise
Sideline EPNdB 108 106.1

Flyover EPNdB 108 104.2
Sonic Boom Overpressure (psf) newton/m 2  (1.86) 89.1 (1.32) 63.2

Energy per Seat Mile (Btu/seat n.mi.) joule/seat m (6102) 3479 (4274) 2437

Emissions CO None
HC None
NO Minimal
H2 -Twice as much

Noxious Odor None

ix
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SUMMARY(CONT)

A comparison of direct operating cost and/or return on investment is strongly

dependent on the cost of fuel. Analysis has shown the DOC of the two vehicles

to be approximately equal when the cost of liquid hydrogen, in $/Btu, is not

more than 1.75 times that of Jet A-1 fuel. At current prices being paid for

petroleum based fuels, this ratio is well within the cost estimated by

several authorities for making liquid hydrogen from coal and water.

A program for developing technologies required for designing, building, and

operating liquid hydrogen fueled supersonic transport aircraft is described

and recommended for implementation. One of the urgent items is a recommen-

dation to carry out a flight demonstration program using existing, subsonic

transport aircraft converted to liquid hydrogen, to provide practical,

operational experience in establishing design requirements and handling

specifications for the new fuel.
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1.0 INTRODUCTION

This is the final report of a study performed by Lockheed-California Company

for NASA-Ames Research Center. The NASA Request for Proposal (RFP 2-19866,

HK-94) dated March 29, 1973, sought promising new ideas for advanced tech-

nology supersonic transport concepts. The intent was to complement the exist-

ing AST studies (References 1, 2, 3, and 4) and provide feasibility informa-

tion for new, different concepts. The contemporary AST studies were all based

on use of conventional (kerosene) type fuel (Jet A-1).

The approach proposed by Lockheed, reported herein, was to investigate the

feasibility of using liquid hydrogen as the fuel in a supersonic transport of

advanced design. This approach was suggested as a result of recognition of

the impending energy crisis and the fact that the world's supply of petroleum

will be significantly diminished by 1990, according to recent projections

(References 5, 6, and 7). The prospects of having the demands of a fleet of

SST's, with their prodigious appetite for fuel, imposed on the dwindling

reserves of crude oil in that time period could very well be the cause for

rejection of America's bid to build such aircraft.

Preliminary conceptual analyses performed by Lockheed had indicated that use

of hydrogen as the fuel in supersonic commercial transport aircraft could

conceivably lead to the following advantages:

* Significantly lower gross weight

* Reduced pollution

0 Lower sonic boom overpressure

* Lower engine noise

• Decreased costs

Accordingly, the subject study was proposed to investigate the economic and

performance potential of liquid hydrogen (LH2 ) fueled AST aircraft and to

discover the extent to which these significant advantages might be realized.

1
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2.0 TECHNICAL APPROACH

The study was conducted in two phases. Phase I was an exploratory analysis,

conducted to parametrically identify the potential of a large number of dif-

ferent configurations of LH2 fueled AST aircraft, and to determine a pre-

ferred design concept, as well as a set of design requirements, for more

specific analysis in Phase II. Table 1 is a list of the mission and vehicle

configuration parameters and their values which were studied in every viable

combination during Phase I. These established the scope of the configuration

investigation; namely, vehicles whose cross-sectional shape ranged from a

conventional wing-body, through semi-blended wing-bodies, to modified lifting-

bodies as illustrated:

MODIFIED
WING - BODY LIFTING - BODY

SEMI - BLENDED
WING - BODY

Aircraft representing this wide range of potential configurations were para-

metrically designed and evaluated in accordance with the list of guidelines

shown in Table 2.

Phase I involved, first, a preliminary sizing investigation to establish

approximate sizes for various example aircraft representing the scope of the

configurations involved in the study. Next, aerodynamic, weight, and cost

parameters were generated to appropriately represent the candidate vehicles

in the ASSET (Advanced System Synthesis and Evaluation Technique) computer

program, described in section 3.2. Engine decks were generated to represent

the performance of hydrogen fueled versions of both turbojet and turbofan

engines for Mach 2.7 cruise aircraft, and of a turbojet for a Mach 2.2 air-

craft. ASSET runs were then made to determine performance capability, weight,

costs and significant design tradeoffs for aircraft representing the full

scope of the candidates from the matrix of design variables. These results

were analyzed to determine the four most attractive vehicle configurations

Preceding page blank
3
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TABLE 1

VEHICLE MISSION AND CONFIGURATION PARAMETERS

CRUISE MACH M = 2.2 AND 2.7

WING AREA m2 (ft 2 )  S = 743.2 , 1021.9 AND 1300.6
(8000) (11,000) (14,000)

WING THICKNESS RATIO (PERCENT) t/c = 3, 5 AND 7

FUSELAGE SECTION AREA m2 (ft 2 ) AB = 13.66 , 19.17 , 23.05 AND 27.22
(147) (206) (248) (293)

THRUST/WEIGHT N/kg T/W = 0.5, 0.6, 0.7 AND 0.8

ENGINE TYPES TURBOFAN AND TURBOJET

GROSS WEIGHT kg (Ib) WG  = 124,738 to 317,515
(275,000) (700,000)

RANGE km (n.mi.) R = 5926 , 7408 , 9260 AND 10,186
(3200) (4000) (5000) (5500)

TABLE 2

BASIC GUIDELINES

Fuel - liquid hydrogen
Planform - NASA Arrow - wing

IOC - 1990

Use of advanced materials and technology postulated to be developed by

1985. (Data available from Lockheed AST studies (References 1 and 4)).

Certification - FAR Part 25 and SST White Book

Noise - FAR Part 36 minus 5 EPNdB

Fuel Eeserves - FAR Part 121.648

Runway Length Determination - FAR Part 25 for 305.60K (900F) day and

304.8 m (1000 ft) airport altitude.

Operability - compatible with Air Traffic Control Systems and general

operating environment envisioned for 1990, including capability for

Category III-A operations.

Aircraft Design Life - 50,000 flying hours

Sonic Boom - no boom at ground level over populated areas

Stability - control configured aircraft

Cost - production up to 600 aircraft. Use modified ATA formulas for DOC

evaluation at passenger load factor = 0.55. Use 1972 dollars for direct

comparison with AST results. LH2 available at airports.

Payload - 28,032 kg (61,800 pounds) (258 to 300 passengers, depending on

class mix).
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for consideration leading to selection of the one preferred vehicle for more

detailed study in Phase II. The final event of Phase I was the Mid Term Oral

Review on 17 October 1973, following which NASA specified the design and

performance requirements of the Phase II airplane.

Phase II consisted of an analysis to provide design, performance, and cost

information for the selected configuration of LH2 fueled aircraft at a greater

level of detail. The design basis and criteria were selected so as to provide

a direct comparison of the cost, performance, and design characteristics of

the LH2 fueled supersonic transport with those of an equivalent design based

on use of conventional Jet A-i (sometimes called JP) fuel. The Jet A-i air-

plane selected to provide this comparison was one being evolved in a concur-

rent study by Lockheed for NASA-Langley Research Center under contract NAS

1-12288 titled, "Study of Structural Design Configuration." (Reference 4).

Thus, the following mission requirements were established:

Cruise speed Mach 2.7

7778 km
Range (4200 n.mi.)

22,226 kg

Payload (234 passengers) (49,000 lb.)

To assure equivalency in design and evaluation between the Jet A-i and LH2

aircraft being evolved in the two separate NASA studies, several changes from

the basic guidelines used in Phase I of the subject study were made for

Phase II. Table 3 lists the differences from those presented in Table 2.

Using these criteria, and the duct-burning turbofan engine shown to be pre-

ferred in Phase I, preliminary size and performance relationships for the

Phase II point design aircraft were established. Aerodynamic data were

rechecked and analyses were made of significant structural areas and of the

cryogenic tanks and their thermal protection system. Based on these results,

new weight and cost relationships were established for input to ASSET. A

series of ASSET runs were made to determine the most advantageous set of

values for parameters such as thrust-to-weight ratio (T/W) and wing loading

(W/S) which would produce an airplane that would perform the desired mission

with the best combination of lowest gross weight, lowest fuel weight, and
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TABLE 3

CHANGES IN BASIC GUIDELINES FOR PHASE II

(Refer to Table 2)

Phase I Phase II

Materials and Technology 1985 1981 *

State-of-the-Art

* technology level defined per
agreement for contract NAS 1-12288

Noise FAR 36 minus 5 FAR 36

Cost 1972 dollars 1973 dollars

28,032 kg 22,226 kg

Payload (61,800 lb.) (49,000 lb.)
(300 passengers) (234 passengers)

minimum cost. The result was definition of the point design LH2 fueled AST

airplane. Design tradeoffs and sensitivities to various parameters were then

established to provide information about the importance of each of the sig-

nificant design and cost variables.

Finally, an assessment was made of the general viability of the concept,

including an evaluation of environmental considerations such as exhaust emis-

sions and sonic boom characteristics. Major technology development require-

ments were enumerated, along with suggested schedules for their implementation.

Recommendations were made. for follow-on development activity.

For convenience, some characteristic properties of Jet A-1 and liquid hydrogen

are listed:
Jet A-1 Hydrogen

Nominal Composition CH1 .9 4  H2

Molecular Weight 120 2.016

Heat of Combustion(Btu/lb.) 18,400 51,590

Liquid Density(lb/ft.3 ) 47 4.43

(at 500F) (at boiling point)

Boiling Point (OF) 400 to 500 -423

(@ one atmosphere)

Specific Heat (Btu/lb.oF) .48 2.22

LOCKHEED 6
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3.0 PHASE I: EXPLORATORY ANALYSIS

The purposes of Phase I were to 1) explore the potential of advanced design

concepts of supersonic transport aircraft fueled with liquid hydrogen,

2) determine four preferred configurations, and 3) generate a set of design

requirements for a specific aircraft which would be examined in greater detail

in Phase II.

As outlined in Section 2.0, the exploratory analysis was conducted paramet-

rically to evaluate every viable combination of mission and vehicle configura-

tion values listed in Table 1. The following sections describe how the basic

data was generated, how the vehicle synthesis was conducted, the general

design and cost results that were obtained, and the general conclusions that

were reached. Finally, the characteristics of the four vehicles that were

selected as the most promising candidates for the Phase II Point Design

refinement study are described.

3.1 BASIC DATA GENERATION

In this section the basis for generating the data required to perform the

vehicle synthesis study is described by technical discipline.

3.1.1 Preliminary Sizing Estimates

The starting point for preliminary sizing of the hydrogen vehicle was the

basic Mach 2.7 hydrocarbon fueled AST with a payload of 28,032 kg (61,800 bs.)

and a gross weight of 340,193 kg. (750,000 lb.). The arrow wing configura-

tion,payload, and low speed characteristics were retained because of the data

background available. A series of systematic hand calculations were made by

modifying the weights, aerodynamics, and propulsion data to identify the

probable range of gross weights, engine sizes, wing areas, and volumes

required for liquid hydrogen (LH2 ) aircraft in order to guide the data gen-

eration for the initial parametric studies. The hydrogen fuel was assumed to

be contained in the lower fuselage lobe and in a thickened wing root. The

fuselage lower radius was expanded as required to contain the fuel volume.

The ground rules followed in this initial investigation are those already

described in Section 2.0, above. Typical characteristics of a hydrogen fueled
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vehicle with a range of 9649 km. (5,210 n.mi.) are given in Table 4 as an

example of the output of the preliminary sizing work.

TABLE 4

PRELIMINARY VEHICLE SIZING

(EXAMPLE LH2 VEHICLE CHARACTERISTICS)

Performance Weights

Engine Turbofan

Kg 76,158
Cruise Mach 2.7 Structures - (lbs.) (167,900)

km. 9,649 Kg 18,035
Range - (n.mi.) (5,210) Propulsion-(lbs.) (39,760)

kg. 28,032 Kg 13,054

Payload - (lbs.) (61,800) Sys.,Furn.& Equip.(lbs) (28,780):

Kg 107,247

Block Time - hr. 4.0 MEW - (ibs.) (236,440)

kg 44, 225 Kg 5,107

Block Fuel - (lbs.) (97,500) OP + Std. Items-(lbs.) (11,260)

kg/m2 2 244 Kg 112,354
Wing Loading - (Ibs/ft ) (50) OEW - (lbs.) (247,700)

Kg 28,032

Thrust/Weight 0. 55 Payload - (lbs.) (61,800)

m 2,195 Kg 140,386

FAR T.O. Fld. Length - (ft) (7,200) ZFW -(lbs.) (309,500)

m/s 78.2 Kg 53,297

Approach Speed (KEAS) (152) Fuel -(lbs.) (117, 500)

L/D - Cruise 7.71

kg/hr/daN 0.571 Kg 193,683
SFC - Cruise (ibs/hr/lb) (0.56) TOGW - (lbs.) (427,000)
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3.1.2 Aerodynamic Parametric Data

The basic philosophy employed during the development of data for the study of

the Phase I parametric series of configurations was to retain the geometric

relationships of the AST Systems/Structures Study vehicles (References 1 and 4)

(herein noted as "original") as much as possible. In this light, then, the

aerodynamic performance of the present study vehicles could be developed from

that of the earlier studies, thus fully utilizing the detailed analyses of

analytical and experimental data already performed.

The matrix of the parametric configuration variables - wing area (S), wing

thickness ratio (t/c), and body cross-sectional area (AB) - is depicted in

Figure 1. Twenty-seven possible combinations (solid lines) were evaluated

initially, while an additional six (dashed lines) were added later to provide

additional range (fuel volume) capability.

This section details the scaling methods employed to develop the study con-

figuration and the aerodynamic data provided for the Phase I parametric anal-

yses of the present study. Aerodynamic data for the Phase II Point Design

vehicle configuration are presented in Section 4.1.3.

3.1.2.1 Geometry Development

Wings

The original wing planform shape and section was retained for all

vehicles to maintain the low speed lift characteristics. Planform and camber

dimensions for the 743.2 (8,000) and 1300.6 sq.m. (14,000) (sq ft) wings were

scaled from the original 1005.4 sq.m. (10,822 sq ft) dimensions by the ratio

study/Sorig . The wing 0.45 MAC station was located at the same relative

body location (0.56 body length) to maintain the basic airframe CG (to the

first order).

The high aspect ratio wings (AR = 2.0) for the M = 2.2 cruise mission were

developed from the M = 2.7 cruise vehicles by scaling the wing dimensions by

VARM=2.2/ARM=2.7 . Wing sweep was defined so as to retain an equal 
value of

Mach number normal to the leading edge.

9
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The wings so developed are delineated in Figure 2a, b, c with the pertinent

dimensions indicated.

Wing thickness ratios were increased at the root airfoil from the original

3 percent (nominal) to values of 5 and 7 percent; the incremental variations

outboard of the root airfoil were decreased linearly to zero at the tip (the

original thickness ratio). Typical spanwise variations at the 50 percent

chord line are shown in Figure 3. No effects on low speed performance were

assessed, such effects being observed only in increased wing supersonic wave

drag.

743.2 M2

sw

tc % 7 8K FT 2% 975.5 M2

5 10.5K FT 2

1300.6 M2

3 14K FT2

13.66

M2 147.0

AB M2  FT2

23.05
M2 248.1

27.22

N. II

,I

Figure 1. Configuration Variables
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WING DEFINITIONS

r-4 Sw = (8,000 SQ FT)
.47.95 M

--- (157.31') Lom
m 7430.11M

Y . MAC = (98.78')

740 17.36 M
X 0.45 MAC AX = (56.96')

AX = 19.89 M (65.24') 33.43 M
Y = 5.70 M (18.71') (109.69')

AR = 1.62 70.840

(MDESIGN = 2.7) 
o

64.640 (12.53')
3.82 M

46.20 M _I
(141.58') -I

27.10 M
Y MAC = (88.90')

700

AX = 17.41 M (57.12') (63.29')
Y = 6.34 M (20.79') 0.45 MAC AX 19.29 M

(97.12')
29.60 M

AR = 2.0 660

S(MDESIGN = 2.2)
590 (11.27')

3.44 M

Figure 2a. Wing Definition for S W = 743.2 sq. m (8000 sq. ft.)



4 r WING DEFINITIONS

0 55.77 M SW = 1005.4 SQ M

(182.96') (10,822 SO FT)

34.49 M

Y 74o MAC = (113.15)

X = 23.13 M (75.88) 0.45 MAC 20.19 M

(MDESIGN = 2.7).84

700 2 W0.4q5 MAC 22.4(4,M

,&X= 18.77 M (61.0- AX = 32.73 M (73.61')

Y = 7.25 M (23.78') 07.39')

S-i--O0 [ 660
i = 2.00

MDESIGN = 2.2) 590

4.00 M
(13.11')

Figure 2b. Wing Definition for SW
= 1005.4 sq. m (10,822 sq. ft.)



Io

WING DEFINITIONS
SW = 1300.6 SO M

(14,000 SQ FT)
___63.37 M

(207.9')

39.26 M
MAC = (128.8')

Fgr 2c 0 W0.45 MAC AX = 42.92 M
22.98 M

AX = 25.30 M (83.0') (140.8') (75.4')
Y = 7.44 M (24.4')

70.840

4 = 1.62 64.640
(MDESIGN= 2.7)

5.04 M
(16.53')

Figure 2c. Wing Definition for SW = 13006 sq. m (14,000 sq. ft.)



400 -

6.0 -

5.0 NOMINAL WING THICKNESS RATIO-%

AT 50% X/C
t/c

4.0

3.0

2.0 I I I I
0 5 10 15 20

Y (SPAN) - METERS

I I I I I I I I
(0) .(10) (20) (30) (40) (50) (60) (70)

Y (SPAN) - FEET

Figure 3. Wing Thickness Ratio



Fuselages

The fuselage retained the cross-sectional area ratio distribution and camber of

the original vehicle. The area ratio distribution is shown in Figure 4. Max-

imum cross-sectional areas of 13.66 (147.0), 19.17 (206.4), 23.05 (248.1), and

27.22 (293.0) sq.m. (sq ft), and nominal overall length of 108.5 m (356 ft)

were employed to develop the parametric fuselage geometries. The basic fuse-

lage section concept from which these areas were derived is shown in Figure 5;

the upper (passenger) lobe is identical to the original and retained through-

out, while the lower lobe (fuel tankage) was varied as indicated.

Horizontal and Vertical Tails

As in the case of the wing, the vertical and horizontal tail planform geom-

etries were retained throughout. The original thickness ratio (3 percent) was

retained and held constant. Tail areas were defined by tail volume coeffi-

cients retained at their original magnitudes (Table 5).

TABLE 5

TAIL VOLUME COEFFICIENTS

Surface Volume Coefficient

fuselage vertical 0.023

wing verticals (two) 0.022

horizontal 0.07

This approach is feasible since in each case (vertical and horizontal), the

dominant designing characteristics were low speed effects - vertical tail:

two engines out at takeoff; horizontal'tail: control power to rotate at take-

off. Longitudinal tail moment arms were scaled by the overall fuselage length

ratio (108.5/90.5) (356 ft/297 ft). The resulting surface areas were then

calculated accordingly. Linear theory suggests an increase in the resulting

vertical tail areas to compensate for the increased lateral fuselage area. In

many cases, however, such theory represents a substantial oversimplification

of the real world; a more detailed analysis is beyond the scope of the present

study and would have no effect on the outcomes of the major conclusions

derived therefrom. The areas, therefore, were not modified.

KHE15
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0.102 M (4")

1.66 M

(21") (10") 0.254 M

2.533 M
(6") o R

0.152 M( 101
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A

AMAX

0.4

0.20.152 M
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MAX

Figure 5. Fuselage Section Definition
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Engine Pods

The centerlines of the engine pods were located at the same percent spanwise

locations as the original. Similarly, the pod inlets were located at the same

relative chordwise location. Pod diameters were defined for nominal engines

sized for each wing and nominal mission requirements.

3.1.2.2 Aerodynamic Development

The aerodynamic characteristics developed for the Phase I parametric series of

configurations were tailored to the requirements and capabilities of the ASSET

Program utilized for the tradeoff studies (see. Section 3.2 for a description

of that program). That program, as configured for the present study, calcu-

lated clean configuration lift (1 g flight assumed), skin friction (based on

component wetted surface area and reference length), and parasite drag.

Hence, for the cruise configuration (gear and flaps retracted), input require-

ments included only the drag-due-to-lift parameter variation with Mach number,

and wave drag. For the takeoff and landing configurations, lift-drag polars

were provided which included gear, flap, and ground effect increments, As noted

earlier, the Systems/Structures Studies (Reference 1 and 4) provided the pri-

mary data base.

Drag-Due-to-Lift

The drag-due-to-lift parameters are presented in Figure 6. These are iden-

tical to the original values for the M = 2.7 airplane, since the wing aspect

ratios are equal and the span efficiency factor may be considered identical

for the purpose of the present study. The parameters were used to develop

the drag-due-to-lift as below:

CD = K(CL - CL 2

The higher aspect ratio of the M = 2.2 aircraft required that the "K" param-

eter be modified by ARM=2.7/ARM=2.2 to reflect the inherent induced drag

reduction.

Wave Drag

The wave drag for each of the 27 possible combinations of parametric config-

uration elements was computed at four Mach numbers (M = 1.2, 1.6, 2.2, and 2.7).

LOCKHEED 17
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Figure 6. Drag-Due-to Lift Parameters
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The NASA/Langley wave drag program, P 7120, (Reference 15) was used for this
analysis. Since this program can accept only circular uncambered fuselages

and uncambered symmetrical wing airfoils, spot checks were made for comparison

purposes, on the effects of a more accurate representation of the configura-

tions using NASA/Langley program D2500 (Reference 16). Negligible differences

were noted at high and low supersonic Mach numbers, and therefore, the P7120
results were considered acceptable for this study. The configuration wave
drag data so calculated are presented in Figures 7a, b, and c, and the com-

ponent wave drag data are presented in Figure 8.

Low Speed Characteristics

The low speed lift characteristics of the original M = 2.7 configuration (in
and out of ground effect) were adopted without change (Figure 9a and b).
This was made possible by the utilization of the original wing geometric

arrangement without change (except for total area). The possible veriation in
body-wing interference is considered negligible since the body radius/wing
semi-span ratio does not vary significantly. Lift-drag polars were also
adopted (Figure 10a and b), but required the calculation of an additional zero-
lift drag increment for each configuration due to significant variations in
body-wing wetted area ratios, Figure 11.

Similar arguments prevailed in developing the low speed characteristics of the
M = 2.2 configuration. In this case, the lift characteristics were modified
to reflect the increased aspect ratio (Figures 12a and b and 13a and b).
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Figure 78. Wave Drag Coefficients S W = 743.2 sq. m (8000 sq. ft.)
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Figure 7b. Wave Drag Coefficients SW = 975.5 sq. m (10,500 sq. ft.)
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Figure 8. Component Wave Drag Data
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3.1.3 Propulsion Data

The propulsion requirements of a liquid hydrogen (LH2 ) fueled supersonic trans-

port aircraft are similar to those of more conventional hydrocarbon fueled air-

craft, except that the LH2 aircraft designed for an equivalent mission will be

significantly lighter, therefore the thrust required will be less, and the spe-

cific fuel consumption (SFC) will be much lower. Engine cycles considered for

the subject study were non-augmented turbojet and duct augmented turbofan

engines.

Although LH2 and JP fueled'supersonic transports require the same types of

turbine propulsion systems, in hydrocarbon fueled aircraft turbine engine

design. the temperature of the air conveniently available to cool the

turbines is essentially the temperature of the final compressor stage air.

Maximum metal temperature restrictions and the compressor discharge air heat

sink potential thus restricts both the maximum compression ratio and the maxi-

mum turbine temperature available for engine design. In the hydrogen-fueled

aircraft turbine engine the cryogenic hydrogen can be used to precool the air

or other medium used for turbine cooling and therefore, within certain bounds,

the hydrogen-fueled engine's compression ratio and turbine temperature can be

independently selected for optimum overall propulsion performance.

Practical limits of overall compression ratios and turbine inlet temperatures

appear to be 40:1 and 20930C (38000F), respectively, for engines which might

be developed in the 1980's. However, determination of the best cycle param-

eters for a particular aircraft design depends on parametric evaluation

related to the aircraft requirements. Although both Pratt & Whitney and

General Electric were contracted to NASA-Lewis for hydrogen engine studies,

sufficient LH2 engine data for either parametric studies or aircraft studies

were not available from either company at the time information was needed for

this study. Lockheed therefore generated the propulsion cycle optimization

study data and the propulsion flight performance data for aircraft evaluation

using Lockheed's propulsion installation subroutines in conjunction with the

SYNTHA engine cycle program. Component efficiency and technology forecasts

were made based on the data and trends discussed below.
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Forecasted component performance data are shown in Table 6. Also shown are

an engine supplier's projections made available to Lockheed for another study.

Engine thrust/weight ratios are shown in Figure 14, where the trend data were

derived from a combination of existing production engines and engine sup-

plier's projections. Turbine temperatures are shown in Figure 15 where the

trends were also derived from a combination of existing production engines

and engine supplier projections.

The three basic methods available for cooling the turbine of a LH2 fueled

engine are: (1) aircooling; (2) aircooling, with a H2/air heat exchanger to

chill the turbine cooling air; and (3) liquid metal cooling used in a closed

loop with a H2/liquid metal heat exchanger. In the interest of cycle analysis

TABLE 6

PROPULSION TECHNOLOGY FORECAST

ENGINE SUPPLIER
LOCKHEED PROJECTED TECH LEVEL
LH2 STUDY 1980 - 1985

Fan Polytropic Efficiency (max) 90% 85 - 91%

Compressor Polytropic Efficiency (max) 91.5% 92.5%

Turbine Adiabatic Efficiency 91-92% ' 90 - 92%

Primary Combustion Efficiency 100% 100%

Combustion Pressure Loss 6% 6%

Fan Duct Pressure Loss 2% 1%

Primary Exhaust Pressure Loss 0.5% . 1%

simplification, Lockheed assumed the use of a liquid metal turbine cooling

cycle for all the parametric cycle and flight performance data generated.

The following preliminary propulsion system installed performance data were

used to develop all the study flight performance data. Figure 16 presents

the inlet ram recovery. The data shown are based on Lockheed and Boeing FAA

SST test experience (References 8, 9 and 10). Figure 17 presents inlet spil-

lage drags for Mach 2.7 and Mach 2.2. The drag data are based on Lockheed,

Boeing, and NASA test data. There is no inlet bypass drag curve because it
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was assumed that the propulsion system would be sufficiently responsive so that

in normal operation the inlet bypass doors would be closed, and that they would

be opened only intermittently to prevent the shock from moving upstream and

that downstream shock movements would be trimmed with engine speed changes.

Figure 18 presents the nozzle velocity coefficient. These data are based on

the P&WA, FAA-SST blow-in-door nozzle data. The performance also accounts for

approximately one pound per second compressor discharge air bleed and 129 kw

(173 horsepower) extraction.

All data were calculated using Keenan and Kayes' hydrocarbon combustion tables

in conjunction with a lower heating value of 119,430 kj per kg (51,590 BTU

per pound)to represent LH2 /air combustion products. These assumptions will

not materially affect the findings of this parametric engine and aircraft

study. Further studies should include the cycle effects of the products of

hydrogen combustion, and a hydrogen-to-engine and aircraft heat balance that

determines the effect of adding energy to the hydrogen fuel on the effective

heating value of LH2 .

3.1.3.1 Mach 2.7 Turbofan

3.1.3.1.1 Cycle Selection - A parametric study was made to select the best

fan pressure ratio, over all pressure ratio, and turbine inlet temperatures

for a Mach 2.7 duct burning turbofan using a liquid metal to H2 heat exchanger.

Figure 19' presents the results of this study. These data show that the per-

formance of a Mach 2.7 cruise turbofan is relatively insensitive to turbine

temperature; that a fan pressure ratio of 3 is nearly optimum and that there

is little gain above an overall pressure ratio of 25. Therefore, when com-

bined with the fuel consumption characteristics shown for subsonic operation,

the cycle parameters listed in Table 7 were selected for the Mach 2.7 duct

augmented turbofan. The maximum duct burning temperature of 19270 C (35000F)

was selected to provide an adequate Mach 2.7 end-of--climb thrust margin.

3.1.3.1.2 Performance Characteristics - Installed flight performance char-

acteristics of the Mach 2.7 turbofan are shown by Figures 20, 21, 22, 23, 24

and 25, for the engine size based on Table 4. It should be noted that all the

data are for a standard atmosphere except the takeoff data which is for an
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ISA +150C (270F) day. Figure 20 is shown as an example of the many duct

temperature-limited engine operation schedules which were evaluated at take-

off conditions to meet FAR Part- 36 minus 5 EPN dB noise constraints.

3.1.3.1.3 Physical Characteristics - The internal flowpath of the Phase I

and Phase II Mach 2.7 duct burning turbofans is shown by Figure 26. This

sketch shows Phase II engine dimensions and presents the engine lines used for

installation configuration purposes. These dimensional characteristics are

based on inlet, fan, compressor, combustor, turbine, and exhaust component

configurations, and gas velocities commonly used by engine manufacturers.

Nacelle configuration, dimensions and scaling data for the Phase I engine are

shown in Figure 27.

3.1.3.1.4 Noise Considerations - The scope of the parametric study did not

provide for a completely integrated acoustic-propulsion system design. How-

ever, as shown by Figure 26 the fan stages are spaced to reduce the blade

passage noise while the blow-in-door nozzle provides tertiary air for sound

suppression. The engine size was selected to meet aircraft liftoff thrust

requirements, and to also satisfy the low noise limit, by restricting duct

burning temperature to 8490C (15600F) during takeoff. The cycle turbine

energy is split so that the noise of the gas generator exhaust is lower than

the FAR Part 36 minus 5 EPNdB noise goals and therefore a noise suppressor is

only required for the fan exhaust. Figures 28a, b and c show the P&WA noise

data that were used for preliminary estimations of sound suppressed noise at

the point of aircraft liftoff. These PhWA data were used to establish the fol-
lowing noise limited engine characteristics: thrust size, takeoff power set-

ting, installation configuration, and weight estimates. These curves were

also used for the initial sizing of the Mach 2.7 and Mach 2.2 turbojet engines
at the point of liftoff. Subsequent to the initial engine sizing effort,
Lockheed developed the suppression curve labeled "Lockheed Assumed Locus of

Optimum Designs" shown superimposed on P&WA suppression data by Figure 29.

These estimates are based on a conglomeration of available data from tests
and analyses of several suppressor configurations which indicate suppression
requirements at a particular jet velocity would be best satisfied by a sup-
pressor designed for that velocity. A locus of such point designs would have

LOCKHEED
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higher suppression capability in the lower velocity region than suppressor

#2 shown by P&WA. These Lockheed assumed noise suppression characteristics

were used for engine sizing in the Phase I and Phase II ASSET parametric air-

craft analyses.

3.1.3.2 Mach 2.7 Turbojet

3.1.3.2.1 Cycle Selection - Turbojet engines are power limited at the high

altitude Mach 2.7 end of climb and thus require the highest possible turbine

inlet temperature. To reduce the engine size for climb and cruise a turbine

temperature of 19820C (36000F) was chosen as the practical maximum for all

parametric cycle and installed engine performance calculations. Because the

Mach 2.7 turbojet was assumed to be a single spool, variable stator engine, a

limiting compression ratio of 25 was selected as a practical maximum. A study

was then made to determine the effects of cycle compression ratio on the

turbojet's performance. Figure 30 presents results of this study. As shown,

there is significant loss in performance with compression ratios less than 25.

Therefore, a turbine temperature of 19820 C (36000 F) and a compression ratio of

25 were selected which, when combined with the component performance charac-

teristics shown in Table 7, provided performance for the Mach 2.7 LH2 fueled

turbojet for the parametric analyses.

3.1.3.2.2 Performance Characteristics - Selected installed flight performance

data for the Mach 2.7 turbojet are shown in Figures 31, 32, 33, 34 , 35 and36 ..

Again, as in the case of the duct temperatures for the turbofan, several

turbine inlet temperatures were investigated for the turbojet to find the con-

dition that would satisfy the noise specification at takeoff. The plot of

Figure 31 is for TIT = 1200 0K (2160oR).

As shown, by comparison of Figures 36 and 25, the turbojet has better super-

sonic cruise specific fuel consumption than the duct augmented turbofan. A

direct comparison of the SFC differential is shown by the SFC vs thrust/pound

of airflow presentation of Figure 37.

3.1.3.2.3 Physical Characteristics - The internal flow path of the Mach 2.7

turbojet is shown in Figure 38. This sketch shows that the conceptual turbojet

generally conforms to common engine industry design practices. As shown, the
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TABLE 7

LIQUID HYDROGEN TURBOJET AND TURBOFAN CYCLE CHARACTERISTICS
(SLS, UNINSTALLED)

PHASE I

Engine Designation LH2TF-1 LH2TJ-1 LH2TJ-2
Engine Type DB TF DRY TJ DRY TJ
Design Cruise Mach 2.7 2.7 2.2

45,100 33,900 42,300
Max Thrust daN (ib) (100,660 (76,100) (95,100)

0.696 0.414 0.414
Specific Fuel Consumption kg/hr (Ib/hr) (0.683) 0.406) 0.406)

464 250 312
Corrected Airflow - w\/I kg/sec (lb/sec) (1024) .(551) (689)

Bypass Ratio 4.4

Fan Pressure Ratio 3.0 -- --

Fan Adiabatic Efficiency 0.866 -- --

Compressor Pressure Ratio 8.33 25.0 25.0

Compressor Adiabatic Efficiency 0.871 0.835 0.835

Overall Pressure Ratio 25.0 25.0 25.0

Nozzle Velocity Coefficient (Duct) 0.981 -- --

Nozzle Velocity Coefficient (Primary) 0.981 0.981 0.981

1649 1982 1982
Max Turbine Inlet Temp OC (OF) (3000 ) (3600 ) (3600 )

1927
Max Duet Burning Temp oC (OF) (3500) -- --

119,430 199,430 119,430
Fuel Heating Value kD/kg (BTU/lb) (51,590) (51,590) (51,590)

Peak Fan Polytropic Efficiency 0.900. . -- --

Peak Compressor Polytropic Efficiency 0.915 0.915 0.915

HP Turbine Adiabatic Efficiency 0.920 0.920. 0.920

LP Turbine Adiabatic Efficiency 0.910 -- --

Primary Burner Efficiency 1.000 1.000 1.000

Duct Burner Efficiency 0.916 -- --

Primary Burner Pressure Loss Ratio 0.060 0.060 0.060

Duct Burner Pressure Loss Ratio 0.071 -- --

Primary Nozzle Pressure Loss Ratio 0.005 0.005 0.005
8.6 7.8 7.8

Thrust to Engine WT Ratio daN/kg (Ib/lb) (8.7) (7.9) (7.9)

LOCKHEED
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NOISE LIMITED TAKEOFF POWER

AST MACH 2.7 DRY TURBOJET LH2TJ-1 STD + 15C T/O

U.S. STANDARD ATMOSPHERE 1962

43.0

19 . THIS EXAMPLE IS FOR A TURBINE
INLET TEMPERATURE LIMITED TO

42.0
DTAM = 15C (15.00 F)

ALTITUDE (FEET)
SEA LEVEL

41.0 2000
SEA LEVEL 4000

6000

18 40.0

o 1 39.0 ) M

x x
Z m
. 17 --

SI 38.0

1219 M

16 36.0

1829 M

35.0

34.0

15 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FLIGHT MACH NUMBER

Figure 31. Installed Flight Performance - Thrust
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MAX CLIMB POWER

AST MACH 2.7 DRY TURBOJET LH2TJ-1

U.S. STANDARD ATMOSPHERE 1962

40 ALTITUDE (FEET)
DTAM A0.T

SSEA LEVEL

SEA LEVEL 5000
15,000

I-

35 -MO 25,000
36,150 .
45,000

T55,000

65,000
30-_ 75,000

45 72 M

25 -

7620 M

R 11019 M

10-

19812 M

5 -- 22860
10

Figure 32. Installed Flight Performance - Thrust
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MAX CLIMB POWER

AST MACH 2.7 DRY TURBOJET LH2TJ -1

U.S. STANDARD ATMOSPHERE 1962

30 -
DTAM = 0.00 ALTITUDE (FEET)

SEA LEVEL

5000
15,00030 - 25,000
36,150
45,000
55,000
65,000

25 - 75,000

S20 - SEA LEVEL 12 M

~ 14 2M

Sf

-T r4 , ',

202 E

15 -
11019 M

13716 M

10-
16764 M

1981

22860

+4;

0

Figure 33. Installed Flight Performance - Fuel Consumption
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PART POWER

AST MACH 2.7 DRY TURBOJET LH2TJ-1

).S. STANDARD ATMOSPHERE 1962

1524 M (5000 FEET)
1.0 - DTAM = 0.00

0.9 -MACH
1.00

0.90
0.80
0.60

0.8 - 0.40
0.30
0.20
0.00

0.7

"--

03 0.6

I

0.5

0.4

0.3

0.2 -

0.0 5 10 15 20 25 30

FN - daN x 103

Figure 34. Installed Flight Performance - SFC
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PART POWER

AST MACH 2.7 DRY TURBOJET LH2TJ-1

U.S. STANDARD ATMOSPHERE 1962

f 11018 M (36150 FEET).

1.0 DTAM 0.00

0.9 MAH

2.10
1.80
1.00

0.8 t 1.50
1.20

0.90
0.80

0.60
0.7

S0.6 4

o.

0.5

0.4

0.3 0

0.2

I I I I I I I

0.0 5 10 15 20 25 30

FN - daN x 103

Figure 35. Installed Flight Performance - SFC
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PART POWER

AST MACH 2.7 DRY TURBOJET LH2TJ-1

U.S. STANDARD ATMOSPHERE 1962

1.1

19812 M (65000 FE.)

DTAM = 0.00

1.0
MACH
2.70
2.40
2.10

0.9 - 1.60
1.00

01.50
1.20

30.90
0.8- 0.60

2r

0.6-

0.5-

0.4#

0.3

I I I I I I I
0.0 2.0 4.0 6.0 8.0 10.0 12.0

FN - daN x 103

Figure 36. Installed Flight Performance - SFC
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0.8

z HYDROGEN FUELED ENGINES
a MACH 2.7
0.7 65,000 FT ALT. D/B TURBOFAN

I

Z

0 0.6

01-

Z
O 0.5-U

LU

u DRY TURBOJET

0.4
U

0.3 I I I I I I I

0 10 20 30 40 50 60 70 80

THRUST daN
SPECIFIC THRUST - AIRFLOW KG/sec

Figure 37. Turbojet vs. Turbofan Performance Comparison



THRUST = 33,850 daN
(76,100 LB)

TRANSLATING SHROUD

TURBINE INLET TEMPS RETRACTING NOISE
19830C (36000F) SUPPRESSOR

140.7 CM

(55.4 IN.) 197.3 C
(77.7 IN.)

673.1 CM (261 IN.)

NOTE: NOT TO SCALE

Figure 38. Hydrogen Fueled Dry Turbojet LH2TJ-1 (Mach 2.7)



K PARAMETER REFERENCE VALUE FN 0.5
M SLS> DIAM = DIAMREF FN

FNSL S , MAX daN (LB) 33850 (76100) \ LS(REF)

FN L.O. daN (LB) 11250 (25300) FNLS 0.35

AC  M2  (FT2 ) 1.579 (17.0) LENG = LENGREF \FNSLSREF)
LCOMP CM (IN.) 140.7 (55.4)

DMA X  CM (IN.) 197.4 (77.7) LINLET = 2.56 X DCOMP

DNOZ CM (IN.) 189.5 (74.6)

LENG CM (IN.) 673.1 (265) WEIGHT = WEIGHTREF FNSLS

LINLET CM (IN.) 360.7 (142)

O WEIGHT KG (LB) 4375 (9645)

*INCLUDES REVERSER AND SUPPRESSOR

LH2TJ-1 TURBOJET NACELLE SUBSONIC

SUPERSONIC

T--

AC  DCOMP DMAX -

196 IN.

- LINLET LENG

Figure 39. Mach 2.7 Hydrogen Fueled Dry TurboJet
Nacelle Dimensions and Scaling Data



dry turbojet engine was configured with a translating shroud plug nozzle, with

provision for the thrust reverser mechanisms and provisions for a retracting

sound suppressor in the plug. Nacelle configuration, dimensions and scaling

data are shown by Figure 39.

3.1.3.2.4 Noise Considerations - The Mach 2.7 turbojet has a very high jet

velocity at the maximum 19829C (36000F) turbine inlet temperature. Thus, con-

siderable throttle cut back to reduce jet velocity is required to meet FAR

Part 36 minus 5 EPNdB noise levels during takeoff. Figure 31 presents an

example of the reduced noise power setting required. Because jet noise is a

function of jet velocity to the eighth power and thrust is the product of air-

flow multiplied by jet velocity, the turbojet engine control was designed so

as to maintain 100 percent engine speed and airflow when the engine was

throttled back for noise consideration. This minimizes the engine size

required to meet noise requirements.

3.1.3.3 Mach 2.2 Turbojet

3.1.3.3.1 Cycle Selection - Because of single spool engine pressure limita-

tions and maximum turbine temperature limitations, the Mach 2.2 turbojet was

assumed to have nearly the same cycle as the Mach 2.7 turbojet. This is

shown by Table 7.

3.1.3.3.2 Performance Characteristics - Selected installed flight perfor-

mance characteristics for the Mach 2.2 turbojet are shown by Figures 40, 41,

42, 43, 44, and 45.

3.1.33.3 Physical Characteristics - The internal flow path and engine out-

line of the Mach 2.2 turbojet are shown by Figure 46. These are very similar

to those shown for the Mach 2.7 turbojet in Figure 38, except that the relative

nozzle diameter is lower because at Mach 2.2 the nozzle expansion ratio

required for efficient thrust conversion is much less than it is for Mach 2.7.

The nacelle configuration dimensions and scaling data are shown by Figure 47.

3.1.3.3.4 Noise Considerations - The noise considerations for the Mach 2.2

turbojet are similar to those of the Mach 2.7 turbojet, however, the design of

.the thrust reverser and sound suppressor will be more difficult in the rela-

tively smaller nozzle.

LOCKHEED 67
CALIFORNIA COM;N



NOISE LIMITED TAKE OFF PWR

AST MACH 2.2 DRY TURBOJET LH2TJ-1 STD + 27F T/O

U.S. STANDARD ATMOSPHERE 1962

43.019 --- DTAM = 27.00
19

42.0
ALTITUDE (FEET)

41.0 4000

18 SEA LEVEL

40.0

o 39.0

I-

z 17
1 z 38.0

LL.

37.0 19

16 - 36.0

829 M

35.0

34.0

15 L 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FLIGHT MACH NUMBER

Figure 40. Installed Flight Performance - Thrust
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MAX CLIMB POWER

MACH 2.2 DRY TURBOJET LH2TJ-2

U.S. STANDARD ATMOSPHERE 1962

DTAM = 0.00
80

'ALTITUDE (FEET)
,SEA LEVEL

5,000
70 15,000

25,000
36,150
45,000
55,000
65,000

60 i75,000
85,000

50 SEA LEVEL

t 7630 M
6 ....... 1524 M

4572 M

z 40 ....

LL

30

137

20

19812 M

22860 M

Figure: 41. Installed Flight Performance - Thrust
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MAX CLIMB POWER

MACH 2.2 DRY TURBOJET LH2TJ-2

U.S. STANDARD ATMOSPHERE 1962

ALTITUDE (FEET)
DTAM = 0.00

SEA LEVEL

5000
15,000

30 25,000
36,150
45,000
55,000 .EA LEVEL
65,000

75,000
85,000 1524 M

4572 M

v 11019 M
20

15

13716 M

Figure 42. Installed Flight Performance - Fel Consumption
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PART POWER

MACH 2.2 DRY TURBO JET LH2TJ-2

U.S. STANDARD ATMOSPHERE 1962

DTAM 0.00

0.9 - MACH
1.20
0.90
0.80
0.60

0.8 XT1- 0.30
0.00

0.7

0.6

0.5

0.4

0.3

0.2

I I I I I I
0.0 1.0 2.0 3.0 4.0 5.0

FN - daN x 103

Figure 43. Installed Flight Performance - SFC
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PART POWER

MACH 2.2 DRY TURBOJET LH2TJ-2

U.S. STANDARD ATMOSPHERE 1962

. i . I 7"i ... : i
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Figure £14. Installed Flight Performance - SFC
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PART POWER

MACH 2.2 DRY TURBOJET LH2TJ-2

U.S. STANDARD ATMOSPHERE .1962

19,812 M (65,000 FT)
1.1DTAM = 0.00

1.0.

- - - - - -MACHI

. ..... . . ... 2.20

0.99

0.88

(U

I

0.6 - -. 0j

'(3

0.6 . . . .. 1 0

0.4

0 2 '4 16 8 li0 12?
FN -- daN x 103
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Figure 45. Installed Fliat Performance - SFC
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THRUST = 42,300 daN
(95,100 LB)

TRANSLATING SHROUD/1-

TURBINE INLET TEMP /j TATN OS
1983oC (3600OF )  UPEO

149.4 CM 190 CM

.8 (74.8 IN.)

729 CM (287 IN.)

NOTE: NOT TO SCALE

Figure 46. Hydrogen Fueled Dry Turbojet LH2TF-2 (Mach 2.2)



PARAMETER REFERENCE VALUE

DIA = DIA F ( FN 0 5 ,

FNSLS, MAX daN (LB) 42314 (95125) IA=DIARE F  FNSLS(REF)
FNLO daN (LB) 22285 (50100) FN .35
AC M2 (FT 2 ) 1.632 (17.5) LENG = LENGREF FNSLS/

DCOMP CM (IN.) 149.5 (58.84)

DMAX CM (IN.) 190.0 (74.84) LINLET = 2.56 X DCOMP

DNOZ CM (IN.) 181.4 (71.4)

LENG CM (IN.) 727.7 (286.5) = FNSLSLENG 
WE :IGHT =WEIGHTREF FNLINLET CM (IN.) . 381.0 (150.) SLSREF

WEIGHT KG (LB) 5466 (12050)

NOTES: , UNINSTALLED

2 INSTALLED, MACH 0.3 SEA LEVEL
INCLUDES REVERSER AND SUPPRESSOR LH2TJ-2 TURBOJET NACELLE SUBSONIC

A3 INCLUDES REVERSER AND SUPPRESSOR

SUPERSONIC

AC~
AC _ DCOMP DMAX----- DNZ

LINLET -' LENG

Figure 47. Mach 2.2 Hydrogen Fueled Dry Turbojet LH2TJ-2

Nacelle Dimensions and Scaling Data



3.1.4 Material Selection

3.1.4.1 Requirements

The major structural materials considered for near-term supersonic transport

aircraft were titanium alloys with some portions of the structure being made

of boron/graphite/Kevlar or other high strength filamentary composites. For

the "far-term" airplane (i.e., 1985 era technology), it was considered that

approximately 40 percent of the aircraft structure (including the wing sur-

faces) would be made from filamentary composites.

The introduction of liquid hydrogen (LH2 ) as a fuel, requires that the mate-

rials used for fuel tanks be capable of:

* Remaining ductile at LH2 cryogenic temperatures of minus 25300c (423 0F).

* Resistant to embrittlement by absorption or reaction with either

liquid or gaseous hydrogen.

Furthermore, if the weight saving advantages of integral type fuel tanks are

to be realized, the tank walls will have to exhibit the structural char-

acteristics of typical aircraft structural materials; namely, high strength-

weight ratios, good fatigue characteristics, corrosion and stress corrosion

resistance, and high fracture toughness.

3.1.4.2 Candidate Materials

The known susceptibility of titanium alloys to hydrogen embrittlement (NASA-

CR-2163, dtd March 1973) prevents their consideration for use as LH2 fuel tank

walls. Even the question of using titanium alloys as aircraft structure, with

nonintegral LH2 fuel tank of a compatible material, is suspect in view of the

high diffusivity of hydrogen gases. The high risk of titanium alloy embrit-

tlement from hydrogen diffusing through fuel tank wall discontinuities would

require the addition of protective barrier films, plus sensitive H2 sniffers

to insure the structural integrity of the airplane.

The materials that have exhibited compatibility with both cryogenic tempera-

ture and hydrogen environments are the high strength aluminum alloys, the

austenitic stainless steels, and filamentary composites, primarily fiberglass.
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Figure 48 shows a comparison of some new and current high strength aluminum

alloys at room temperature. The resistance to flaw growth of 2219-T851 at

room temperature is among the highest of the aluminum alloys being studied.

Interestingly, testing at cryogenic temperatures has not indicated any embrit-

tlement of 2219-T851 as reported in the "Damage Tolerant Resistant Handbook",

MCIC-HB-0 l, Metals & Ceramics Information Center and Air Force Materials Lab-

oratory, as revised September 1973.

Comparing the austenitic stainless steels (i.e., Type 304) with the aluminum

alloys at room and cryogenic temperatures does not indicate any advantage for

the austenitic stainless steels.

In view of its weldability, formability, stress corrosion resistance and high

fracture toughness, plus resistance to flaw growth, 2219 aluminum alloy was

selected for the fuel tanks.

Composite Materials - Filamentary composites used for missile LH2 tanks are

primarily fiberglass-epoxy resin. AFML-TDR-64-280 (revised 1970) Cryogenic

Materials Data Handbook documents room temperature and cryogenic properties

for a number of fiberglass-epoxy resin combinations.

Cryogenic testing of new fibers, such as boron, graphite and Kevlar -49,

either with epoxy resin or metal matrix resins, has been extremely limited.

Table 8 compares some typical properties of the fiberglass-epoxy, boron-epoxy

and boron-aluminum composites at room and/or cryogenic temperatures. Test

data on graphite-epoxy resin composites at cryogenic temperatures could not be

found.

The advantages of graphite and boron fibers, when compared to fiberglass, are

higher modulus and compressive strengths. These higher properties may be

utilized in integral tanks which also serve as structural airplane components.

However, a great deal more. data must be developed prior to selecting these

materials for either an integral (LH2) tank and airplane structure, or even

for a nonintegral LH2 tank carrying only pressure tank loads. Primarily, it

must be proven that the filament-matrix combination would be compatible with

the LH2 plus service environments and loads for long time cyclic exposure,
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Figure 48. Candidate Aluminum Alloys Comparison



TABLE 8

COMPOSITE MATERIAL PROPERTIES

Test F * E * F * E;* IZOD
Fiber Densit Temp. tu t cu c Un-notch Notch Notch

Material Vol. lb/in. Co KSI MSI KSI MSI FT-LB FT-LB Depth/Radius

Boron/Epoxy 0.50 0.0725 21 188 30 362 32 46.3 22.8 0.104 - 0.o010
Fiber B4
AVCO 5505/4 -253 204 33 542 31 39.5 27.0 0.098 - 0.olo
Matrix 2387
00 Fiber
Flat Coupon

Fiberglass/ 18% resin 0.0721 21 280 8.3 155
B oxy
S1901 Roving -253 300 9.4 238
00 Fiber
E-787
Laminate
Coupon

Notch ratio
Un-notch

146 0.68

Boron/Alum. 0.48 0.095 "21 216 31.1 283 37.3
Fiber 5.6 Mill
Matrix - -196 218 30.4 271 38.5 109 0.5
AL 6061-F
00 Fiber
Flat Coup.

*Unidirectional



,0 TABLE 8

AII. COMPOSITE MATERIAL PROPERTIES (Cont'd)

Fiber Densit Test F * E* F * E IZOD Notch Notch
Fiber Density tu t cu c NotchNot

Temp. UN-notch Depth/Radius

Material Vol. lb/in. em. KSI MSI KSI MSI FT-LB FT-LB Depth/Radius

Boron/Polyimide
Boron (4 mil
filament tape)-

Polyimide(P-13N)
Fiber 50 0.072 21 180 32 175 30

-55 170 30.5 - -

260 135 28 150 30.5

Graphite/
Polyimide
Modmar II

(Graphite)- 58-62 0.056 21 213 23.7 178.3 21.9

Skybond 703

Polyimide 260 169.1 23 63.88 22.5

00 Fiber

*Unidirectional



both under load and cycling between loads and temperatures. This is

particularly necessary for resin matrix composites where permeability of

hydrogen gas would be high and a barrier material would be required.

Barrier Materials

Design Considerations - There are basically two design applications:

(a) Cryogenic insulation applied to the inside of the tank structure.

(b) Filament wound/resin LH2 storage tanks.

In either design, the choice of barrier film materials is limited by the

expected service temperatures to be encountered by the film. These temper-

atures could range from -4230F to +470 0F, depending on the location chosen

for the application of the film. Resistance to LH2 , gaseous I2 or both, could

be a requirement for the film material, also depending on its location.

Internal Cryogenic Insulation

For this application the use of a barrier film would be necessary to prevent

the gaseous H2 from permeating through the insulation, thus reducing the

effectiveness of the cryogenic insulation. The task of providing a continuous

film inside the tank appears extremely difficult. Achieving gas-tight bonded

joints or heat sealed seams in view of the available film widths and the geom-

etry of the structure requiring isolation will not be easy. Table 9 lists the

candidate film materials which should be evaluated, along with some of their

essential properties. Aluminum foil is another candidate barrier material

which should be considered.

Filament Wound/Resin Storage Tank

For this design concept, the barrier film material can be located in three

different places to perform the function of preventing LH2 or H2 gas from

escaping from the storage tanks. If placed internally, the barrier film need

not be compatible with the resin system; however, it must be serviceable at

-4230F. When placed on the exterior of tank or under a restraining layer of

fiber/resin winding, the film must be fairly compatible in adhesion to the

resin system. Service life at -423OF and resistance to LH2 and gaseous H2

permeability are essential requirements.
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TABLE 9

PHYSICAL PROPERTIES OF FILMS
omf

H2 Permeability Temp. Limit

Barrier Film Spec. Gravity (100 in.2 )(24 hrs)(mil)23.50C Service Life Remarks

Polyester (Mylar) 1.39 600 cc -100oF to 300 0F Could possibly be
(1 atm) used at lower

temp where no
flex life

required.

Polyvinyl fluoride 1.57 950 cc -1000F to 3000F Could possibly be
(Tedler) (1 atm) used at lower

temp where no flex
life required.

Oo Polyvinyl Chloride 1.68 450 cc -650F to 2000F Could possibly be

(Saran) used at lower
temp where no flex
life required.

Teflon (FED) 2.15 2340 cc -4250F to 400°F

(1 atm)

Polyimide (Kapton) 1.42 250 cc -4250F to 4700F

Fluorohalocarbon 2.1 1500 cc -100oF to 3000F Could possibly be
(Aclar) (1 atm) used at lower

temp where no flex
life required.



External Heat Shield Structure

The selection of graphite and/or Kevlar -49 polyimide composites for use as a

heat shield is based on data from in-house programs at Lockheed. It has been

shown that Graphite/Kevlar -49/epoxy composites have about three times the

foreign object impact resistance of graphite-epoxy systems. The aging char-

acteristics of polyimide systems under load and temperature are being

evaluated.
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3.1.5 Weight Parameters

3.1.5.1 Basis for Weight Estimates - Phase I

Weight equations to represent the subject LH2 AST were developed using the

Jet A-1 fueled AST aircraft of the NASA-Langley Systems Study (Reference 1)

and the Arrow-Wing Structures Study (Reference 4) as the starting point.

The equations relate the component weights to aircraft geometry, materials

selection, and loading parameters.

The Jet A-1 AST weight equations were modified to apply to the hydrogen-fueled

transport in the following manner:

Wing - Increased 11.2 percent for fewer ribs and spars due to

internal wing tanks and support.

Fuselage - Floor weight increased 300 percent to 9.37 kg/m
2

(1.92 lb/ft2 ) for pressure deck and tank support

structure.

Fuel System - Weight increased 20 percent for venting, pressurization

and refueling systems.

Unusable Fuel - Increased from 0.9 to 2 percent of total LH2 weight.

Tankage - Tank and thermal protection system weight is unique to

the LH2 fueled aircraft; therefore, it is expressed as

a fraction of the hydrogen weight:

Tanks .146

Thermal Protection .11 to .13 kg/kg of LH2

Total .256 to .276

Boil-off - Included in thermal protection system weight.

The weight estimating equations were further modified to reflect advanced

technology in such fields as composite materials and structural concepts.

This was accomplished by applying a matrix of materials distribution for each

major vehicle element with an associated weight reduction factor. The weight

of components and systems associated with the use of liquid hydrogen was

influenced by Lockheed's experience on the following programs:

CL400 - A Mach 2.5 hydrogen-fueled interceptor aircraft, 1956 - 1958,

LR 12296. (Reference 17).
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Manned Hypersonic Cruise Vehicle - structural concepts and tankage

comparisons, 1966 - 1968 (F33615-67-clo088). (Reference 18).

Airbreathing Launch Vehicles with Cruise Capability - Volume IV of

study report explores structural and weight aspects of these vehicles.

(NAS 2-4084, CR 73197) This study pointed out that maximum payload

and minimum vehicle cost is obtained with integral in lieu of non-

integral hydrogen tankage. (Reference 19).

Lockheed Independent Development - a series of investigations involving

both design studies and hardware testing of LH2 fueled aircraft and

related components from 1962 - 1968.

From the above data, and related prototype and production programs, para-

metric equations were derived using a least squares multiple regression

mathematical approach. In conjunction with analytical methods, this approach

obtains selected parameters that correlate best with historical data. The

resulting weight equations were used in the ASSET Program to get a direct

comparison between a Jet A-1 AST and the LH 2 AST.

3.1.5.2 Fuel Volume Available

During Phase I, it was planned to carry hydrogen in both the fuselage and

wing. To facilitate evaluation of total fuel volume available, body and

wing capacity curves were developed which showed the effect of varying body

radius, wing thickness and area. Table 10 is a summary of the fuel volume

estimated to be available.
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TABLE 10. VEHICLE LH2 CAPACITY ESTIMATE

LH2 Weight (@ .0676 gm/cm
3 )

Wing Area

Wing to BL = RB Body Total
Body Radius 1000

t/e 2 2
m (in.) (%) m2 ft.2 kg. (lb.) kg. (lb.) kg. (lb.)

1.60 63.1 3 743. 8 1,769 3,900 19,504 43,000 21,273 46,900

1.98 77.9 3 1,043 2,300 39,780 87,700 40,823 90,000
2.24 88.2 3 590 1,300 54,430 120,000 55,020 121,300

1.60 63.1 5 10,478 23,100 19,504 43,000 29,982 66,100

1.98 77.9 5 8,981 19,800 39,780 87,700 48,761 107,500
2.24 88.2 5 8,029 17,700 54,430 120,000 62,459 137,700
1.60 63.1 7 19,005 41,900 19,504 43,000 38,509 84,900

1.98 77.9 7 16,737 36,900 39,780 87,700 56,517 124,600

2.24 88.2 7 743. 8 15,286 33,700 54,430 120,000 69,716 153,700

1.60 63.1 3 1022. 11 5,670 12,500 19,504 43,000 25,174 55,500

1.98 77.9 3 4,536 10,000 39,780 87,700 44,316 97,700
2.24 88.2 3 3,674 8,100 54,430 120,000 58,104 128,100
1.60 63.1 5 21,772 48,000 19,504 43,000 41,276 91,000

1.98 77.9 5 19,414 42,800 39,780 87,700 59,194 130,500

2.24 88.2 5 17,962 39,600 54,430 120,000 72,392 159,600

1.60 63.1 7 35,743 78,800 19,504 43,000 55,247 121,800

1.98 77.9 7 32,250 71,100 39,780 87,700 72,030 158,800

2.24 88.2 7 1022. 11 30,118 66,400 54,430 120,000 84,543 186,400

1.60 63.1 3 1301. 14 12,020 26,500 19,504 43,000 31,524 69,500

1.98 77.9 3 10,569 23,300 39,780 87,700 50,349 111,000
2.24 88.2 3 9,616 21,200 54,430 120,000 64,046 141,200

1.60 63.1 5 35,380 78,000 19,504 43,000 54,884 121,000

1.98 77.9 5 32,432 71,500 39,780 87,'700 72,212 159,200

2.24 88.2 5 30,436 67,100 54,430 120,000 84,866 187,100
1.60 63.1 7 56,427 124,400 19,504 43,000 75,931 167,400

1.98 77.9 7 51,981 114,600 39,780 87,700 91,761 202,300
2.24 88.2 7 1301. 14 49,033 108,100 54,430 120,000 103,463 228,100
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3.1.6 Cost Parameters

The cost estimates applicable to the liquid hydrogem AST are:

* Development

* Investment

* Operation

DOC

IOC

* Return on Investment

The estimate for the above categories of cost are produced by a series of

subroutines within the ASSET Program, plus use of a separate computer program

for the final ROI calculation. The computer programs are described in Appen-

dix A. The bases for deriving the input parameters and factors to these

various models are discussed in the following paragraphs.

3.1.6.1 Development

The following list of input factors are used in the development cost model

(see Appendix A) for the evaluation methodology for the LH2 AST.

Maximum Mach number (XMMAX) 2.7

Tooling material rate (TMR) 1.73

Number of aircraft in the development program (XNYO) 4

Complexity factor for engineering (XKE) .8

Complexity factor for tooling (XKT) .88

Complexity factor for flight test (XKFT) .37

Numnber of test articles for structural tests (XNSTA) 1.0

Number of test articles for fatigue tests (XNFTA) 1.0

Number of test articles for systems test (XMTSF) .30

Engineering test material rate (ETSMR) 0

Flight Material Rate (EFTMR) 0

Value of constant for engine development (CEDCF) 21.3 x 106

Development production rate for development (DR) 3 or 6

Development cost factor for avionics (DAV) 0

Airfarme spares factor for development (AFSF) .15

Engine spares factor for development (EDSF) .50
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Avionics spares factor for development (AVSF) .30

Special support factor for development (DSSEF) .02

Technical data cost factor for development (DATAF) .005

Profit factor for development (DPROF) .15

Operator trainer cost factor for development (DOT) 0

Maintenance trainer cost factor for development (DMT) 0

The estimates for design engineering flight test, and tooling are primarily

dependent upon the aircraft performance characteristics, and the aircraft

size as denoted by weight and the complexity of the configuration. The re-

mainder of the estimates are either direct inputs or simple algebraic expres-

sions developed from historical data. In the subject study the development

equations are being applied to a vehicle that has size and performance char-

acteristics that fall outside of the range of characteristics from which the

equations were developed; therefore, the equations were validated by compari-

son to other estimates and reported costs for the Concorde.

Lockheed has developed a parametric approach to assist in validation of cost

quotes. The parametric approach uses a multiple regression technique to

arrive at selected parameters that correlate best withhistorical data. The

Lockheed historical data bank encompasses 14 prototype programs and 17 pro-

duction programs. The selected independent variables are manufacturer's

empty weight (MEW), design speed, duration of the flight test program in

months, quantity of prototypes to be built, and an overall program index

relating to state-of-the-art.

The Lockheed parametric approach was applied to the liquid hydrogen AST and

the results compared to the results obtained from the parametric equations

in the ASSET Program. The results from the Lockheed parametric approach

were used to modify the ASSET equations. Appropriate modifications are re-

flected in the input listing shown above. As noted in the listing, the

complexity factors for engineering, tooling and flight test of the LH2 AST

are less than unity although they are greater than corresponding factors

used for the Jet A-1 AST. Both factors are less than unity in recognition

that the basic equations reflect excessively high values. These inputs and the
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development model described in Appendix A form the basis for the development

cost estimate for the LH2 AST.

3.1.6.2 Investment

The investment cost for the LH2 AST includes the production cost for the

aircraft, the spares, production tooling, special support equipment, and

technical data. Operator and maintenance trainers are not included at this

time. The number of trainers is determined through a complete analysis of

total airline requirements and policy as to centralized or decentralized

training concepts. The study of trainer requirements is beyond the scope

of this study and thus costs are not included. The premises and factors

used for calculating the investment cost are shown in Table A-1, included

in Appendix A. The definition of the factors is included in the investment

cost model description.

Cost Estimating-Data - The imput labor hours per kg (pound) and material

dollars per kg (pound) are based on an aircraft with an empty weight of

102,965 kg (227,000 pound) (1967 SST). An analysis of historical aircraft

manufacturing costs indicated that as aircraft empty weight increased, the

cost per pound decreases. The cost per pound increase or decrease approxi-

mates a straight line'on log-log graph paper, similar to a cost quantity

plot except that dollars are plotted against weight. For the AST study, it

is assumed that typical slopes for supersonic aircraft with a high percentage

of materials other than aluminum are 99 percent for material and 96 percent

for labor. Straight line logarithmic cumulative average learning curves

are used for adjustment of the baseline input values at 100 units. The

baseline input values are adjusted for quantities of 300 and 600 aircraft

with learning curve slopes of 80 and 90 percent for labor and material

respectively.

The labor hours and material dollar inputs as listed on Table A-I in Appen-

dix A are based on the Lockheed SST effort and are updated to reflect the

material composition in the AST Systems Study (Reference 1) and the detailed

value engineering effort performed on the AST structural analysis study

(Reference 4). The engine cost estimate is based on the quantity of engines

required for the aircraft produced plus 30% spares.
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Engines for 300 aircraft = 4 x 300 x 1.3 = 1560

Engines for 600 aircraft = 4 x 600 x 1.3 = 3120

The learning curve slope for engines is 90%. The avionics are consid-

ered as off-the-shelf purchase at $500,000 regardless of quantity.

3.1.6.3 Operations

The direct operating costs (DOC) are determined from a modified ATA method.

This method is described in Appendix A. The basic input factors used for

calculation of the DOC are included here.

Flight Crew

Supersonic bonus (SSB) $15/hour

International flight bonus $20/hour

Inflation rate for crew 7% per year

Fuel & Oil

Jet A-i 4.34 cents per kg (1.97 cents per pound)

LH2 (basic) .22 cents/kg (.10 cents/ib) up to .661 cents/kg

(.30 cents/lb) for sensitivity analysis

Oil $2.083 per kg ($.945 per pound)

Insurance

Premium rate of 2.5 percent

Depreciation

Wrize off period 14 years

Residual value 0

Spares Ratio

Airframe 15 percent

Engine 30 percent

Avionics 30 percent

Maintenance

Maintenance labor inflation rate 5 percent

Maintenance burden factor 1.9
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The indirect operating costs(IOC are determined by a method also described in

Appendix A. The indirect expense factors evaluated in the following table are

those experienced by the international carriers. See Appendix A for definitions.

XKSE = 0.6 XKPH = 12.0

XKOE = 2.87 XKCH = 96.0

XKCO = 58.0 XKOP = .0061

XKAT = 27.0 XKOC = .0065

XKFB = 0.58 XKGA = .064

3.1.6.4 Return on Investment (ROI)

The ROI as calculated by the ASSET Program for screening purposes is in

the form:

ROI = (TOTREV - TOTEXP)
TOTIN V/2

where

TOTREV = total revenue

TOTEXP = total expense (DOC + IOC)

TOTINV = total cost for aircraft including amortized R & D plus

spares and tooling

Another form of ROI calculation has been devised to include more of the

economic factors generally included in an ROI calculation. The model

description for this ROI calculation is included in Appendix A. The ROI

is depenlent upon the aircraft performance and cost, the passenger demand,

range, and the interest rate. The factors used in the calculation of the

economic ROI are:

Gate Time (GT), hours .25

Block Time (TB), hours obtained from ASSET

Block Fuel (FB), lbs obtained from ASSET

Flyaway Cost for the Airplane (CFA), dollars obtained from ASSET

Passenger Size (XNPASS) 234

Stage Length Flown (RANGE), kilometers (n.mi.) 7783 (4200)

Load Factor (LF) .55

Utilization (U), hours/year 3,600
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Number of years of depreciation (YRDP), years 14

Airframe spares factor (AFSF) .10

Engine spares factor (ENSF) .30

Special support spares factor (SSE) .05

Zero range fare cost (REV 1), dollars 9

Fare cost as a function of range (REV 2),

$/km ($/n.mi.) .0919 (.0496)

Debt to equity ratio (DBTR) 60/40

Interest rate on borrowed money (IR) .08

Tax rate (TXRATE) .48

Average amount of cargo (AVCARG), kg (ibs) 907.2 (2,000)

Revenue rate for cargo (REV 3), $/kg.km. ($/ton n.mi) 504.0 (.30)

Number of aircraft delivered per quarter (DSQ) .38

Number of aircraft available for operations

from the total number purchased (AVAIL) .90

The revenue is based on a fare level that is approximately 20% above the

current coach fare between Los Angeles and Honolulu. The LH2 AST fare is

calculated on the basis of a 10/90 ratio for first class-to-coach with a

30% increase in the first class fare and an additional 15% charge for all

passengers for the supersonic surcharge.

The fleet size and the number of trips flown by each aircraft is a function

of the passenger demand and the aircraft size and performance. The passenger

demand is3 taken from the forecast demand for the Los Angeles to Honolulu

route as indicated in the Phase II AST study (Market Analysis) contract

NAS-l-11940 (Reference 1). The estimated passenger demand for this route

is 1,806,750 passengers per year.
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3.2 PARAMETRIC VEHICLE STUDY

The focal point for the technology data generated as described in the previous

sections is the ASSET (Advanced System Synthesis and Evaluation Technique)

synthesis model. This model is designed to size, weigh, perform, and cost

large numbers of aircraft design options parametrically. The synthesis

cycle required to size the vehicle for given payload/mission requirements

is accomplished within ASSET by integrating data describing vehicle geometry,

aerodynamics, propulsion, structures/materials/weights, and cost. A schematic

presentation of the inputs and outputs involved in the synthesis cycle is

shown on Figure 49. The key elements and the flow of information through

ASSET are depicted on Figure 50.

The three major subprograms in ASSET are sizing, performance, and costing.

The Sizing subprogram sizes each parametric aircraft to the design mission.

The design characteristics and component weights of the sized aircraft are

then transferred to (1) the Costing subprogram, which computes aircraft cost

on the basis of component weights and materials, engine cycle and size,

avionics packages, production and operational schedules, and input cost

factors, and (2) the Performance subprogram which computes acceleration,

maximum speed, ceiling, landing and takeoff distances, and other performance

parameters. The ASSET program output consists of a group weight statement;

wehicle geometry description; mission profile summary; a summary of the

vehicle's performance evaluation; RDT&E, production, and operational cost

breakdowns for each candidate vehicle; and summaries of these data for the

matrices of candidate aircraft. Plots of these weight, cost, size and per-

formance parametric data can be automatically plotted on 35 mm microfilm

from which hard copies are made.

The range of vehicle mission and configuration parameters investigated is

shown in Table ... All parameters were not investigated for all vehicles

but were limited by the results of previous runs. For example, a t/c of 7%

was not included in the Mach 2.2 airplane as data from the Mach 2.7 cases

had shown it to have an excessive drag penalty.
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The final data from the ASSET runs is presented in both tabulated and

autoplotted carpet format. Figure 51a is an example of an automatically

plotted carpet plot, complete with three sample constraint lines. From

a series of working level autoplot presentations the final vehicle charac-

teristics desired such as gross weight, cost, range, etc. can be selected

and displayed in a conventional manner as shown in Figure 51b.

Included in the schematic of Figure 50 is a capability to calculate jet

noise, recently incorporated in the ASSET program. The calculation method

is based on Aerospace Information Report No. 876. When parametric variations

are made to thrust, wing loading and any other performance and/or aircraft

characteristics, different takeoff flight profiles are effected which results

in a change in the noise footprint. The inputs required are:

(1) Engine exhaust characteristics such as; velocity, density and

area for each exhaust stream, i.e., core engine or fan duct.

(2) The engine exhaust noise directivity profile.

(3) The number of microphones and their location relative to the point

of brake release.

(4) Exhaust noise suppressor effectiveness.

(5) Aircraft characteristics.

During takeoff both the flyover 6.48 km ((3.5 n.mi.) from brake release) and

peak sideline 0.648 km ((0.35 n.mi.) from runway centerline) noise levels

are comruted, the greater of which is the critical noise level. At each

microphone location noise calculations are made at half second intervals to

build up a noise history for use in computing the duration correction factor.

This correction factor is added to the tone corrected perceived noise level

and results in the effective perceived noise level (EPNL) which is the noise

evaluation quantity. This method of predicting noise generated, is applicable

to both conventional turbojet and turbofan engines. The noise calculation

described does not include fan, compressor, machinery, combustion or aero-

dynamic noise.

LOCKHEED 95



r-

z0

I

ASSET
PROGRAM

SAMPLE AUTOPLOT SELECTED VEHICLES
FAR T.O. DIST 3200 m (CHARACTERISTICS)

(10500 FT)

(6.0) 11100 SELECTED
VEHICLE

FUEL WTWT
E REQD.

o 0 COST
(5.0) T 9260 227 AVAIL.

uJ . (500)
,, W G  DOC,

Q3 z
z <5 .6 215
r a (475)

LDG; DIST=oE
T/W 2896 m

(9500 FT)

(4.0) 7400 (450)
(a) RANGE (b)

51. Data Presentation and Reduction



3.3 RESULTS OF PHASE I PARAMETRIC STUDY

3.3.1 Design Trends

The results and design trends of the Phase I Parametric Study are presented

in this section. All vehicles represented in the curves which follow meet

all the constraints of takeoff and landing distances and the noise limita-

tions, and were picked from ASSET computer results on the basis of minimum

weight.

Geometric Parameters. - Figure 52 shows the effect of wing thickness ratio

(t/c), wing area (S ), and wing loading (W/S) on gross weight for aircraft

designed for a.range of 8,704 km (4,700 n.mi.), selected as a typical example.

The range of t/c's and wing areas considered produce vehicle cross sections

which vary from a discrete wing-body (t/c = 3, SW = 743.2 m2 (8,000 ft2 ) to

a modified lifting-body (t/c = 7, SW = 1,765 m
2 (19,000 ft 2 ) as indicated by

the sketches on the figure. The trend of the curves illustrates the tradeoff

between drag and structural weight. Increasing wing area, relative to the

fuselage size, causes the L/D to increase and fuel required to decrease.

However, these advantages are more than offset by increasing wing weight.

This effect is also shown in Figure 53 in which weight fractions, cruise L/D

and wing loading (W/S) are plotted vs. wing size for a t/c of 3%. The in-

crease in cruise L/D causes a slight reduction in fuel fraction which is more

than offset by the wing weight resulting in a net decrease in the weight

fraction available for payload and equipment. This in turn requires an

increasing gross weight to carry the fixed payload.

A further effect of increasing wing size (low W/S) is that as the cruise wing

loading is lowered, higher altitudes (lower 'q') are required to achieve

L/Dmax . These higher altitudes require larger engines and the net result is

a compromise limiting the actual cruise L/D compared to the maximum attainable

as shown in the figure.

Figure 54a, which is derived by cross plotting data from Figure 52, shows the

effect of wing thickness on gross weight indicating about the same gross

weight for t/c's from 3 to 4% but a rapid rise due to the drag increase

beyond 5%. Figure 54b illustrates that in general, due to the low quantity
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of fuel burnoff of hydrogen AST's, the wing is sized by landing field length

and not the takeoff condition.

Engine Selection. - One of the primary considerations in the choice of engines

is the ability to meet the Phase I ground rule of FAR 36 minus 5 EPNdB with

regard to airport and community noise. The propulsion section (3.1.3) has

described the assumptions made with regard to relative jet exhaust velocity

and noise suppressor effectiveness for both turbojet and turbofan engines.

The net effect for both engines is to limit the relative exhaust velocities

to the range of 549-579 m/sec (1,800 - 1,900 fps). With this jet velocity

fixed the second consideration is to meet the 3200 m (10,500 ft) engine-out

takeoff distance which required a thrust/weight of approximately 0.3 at lift

off. The relative jet velocity required to meet the noise constraint is

achieved by power cut-back. In the case of the turbojet this limits thrust

for takeoff to about 39 percent (61 percent cutback) of maximum while the

turbofan can use 56 percent (44 percent cutback). The net result is that

the uninstalled thrust/weight (T/W) for the turbojet is 0.8 compared to

only 0.58 for the turbofan to meet both the noise and takeoff distance con-

straints. The high installed thrust/weight required of the turbojet is

partially offset by a lower SFC during supersonic cruise (see Section 3.1.3).

This is illustrated in Figure 55 which shows the turbojet superior to the

turbofan at ranges exceeding 9,260 km (5,000 n.mi.).

A further consideration, while not explicit in the study ground rules, is

the ability to accomplish off-design missions in which either initial or

final cruise legs are flown subsonically to avoid sonic booms in populated

areas. Figure 56 shows a comparison of vehicles powered with turbofan and

turbojet engines which reflects the lower specific fuel consumption (SFC) =

0.296 kg/hr/daN (0.29 lb/hr/lb) of the turbofan compared to the turbojet

SFC = .377 kg/hr/daN (0.37 lb/hr/lb) during the subsonic cruise. It should

be emphasized that the turbojet cycle characteristics were not optimized for

this consideration and that were a subsonic leg actually a design requirement

the range deterioration could possibly be reduced. In any event, the turbofan

engine cycle is inherently more flexible with regard to choice of performance

and noise characteristics than.the turbojet.
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Cruise Speed Comparison. - Figure 55. is a summary plot showing a comparison

of range vs. gross weight of a series of vehicles powered by turbojets and

turbofans, each designed to cruise at Mach 2.7, in addition to a similar

curve for vehicles designed to cruise at Mach 2.2 and powered by turbojets.

While Mach 2.2 turbofan engines were not run, it is not expected that the

results would be any different than indicated by the Mach 2.7 vehicle compari-

son. As previously stated, all vehicles chosen meet all the constraints of

takeoff, landing, and noise and were picked on a minimum weight basis. The

Mach 2.2 vehicles exhibit slightly lower gross weights all the way up to

the maximum range investigated 8,890 km (~4,800 n.mi.).

3.3.2 Cost Trends

The Direct Operating Costs (DOC) for the vehicles shown in Figure 55 are

presented in Figure 57. It should be remembered that this is not a plot of

given airplane flying different ranges but rather, different point designs

flying at various design ranges. Consequently, the longer the range, the

larger and heavier the vehicle with an attendant increase in DOC. These

DOC's are based on an arbitrary fuel cost of 220/kg (10¢/lb) for the liquid

hydrogen fuel.

Table 11 is presented to illustrate a typical production cost comparison

for an LH2 fueled AST, compared with a Jet A-1 fueled AST. The $/kg ($/lb)

cost factors indicated have been increased for the hydrogen vehicle by an

estimated complexity factor, where appropriate. In both cases t1e range and

payload are the same.
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TABLE 11. PHASE I PRODUCTION COST COMPARISON

(Jet A-i vs. LH2 Fueled AST)

BASIS:

* No R&D Amortization

* 300 Aircraft

* 1972 Dollars Using 1980-85 Technology

7,778 km 7,778 km /27/TJ/2.7/TFJ
(4,200 n.mi.) (4,200 n.mi.)

Jet A-i Fuel LH2 Fuel

kg $/kg ht kg $/kg
Weight-(lbs) Dollars ($/lb) Weight-( bs) Dollars ($/Ib)

43,551 13,670,000 313 23,479 8,998,000 384
Wing (96,013) (142) (51,763) (174)

17,056) 309 19,121 362
Fuselage (37602) 5,247,000 309 19,12 6,906,000 362

(37,602) (140) (42,154) (164)

2,400 346 12,100* 1,660,000 137
F(5,291) (157) (26,675*) (62)

Other 47,106 814 30,220 27,088,000 897
(103,851) 38,320,000 (369) (66,624) (407)

20,615) 373 11,733 648
Engine (45,448) 7,684,000 (169) (25,868) 7,604,000 (294)

863 5,798 863 5,798
Avionics (1,903) 500,000 5,98) (1,863) 500,000 (2,630)

131,590 66,253,000 97,516 52,756,
(290,108) (214,987) 52,756,000

*Includes LH 2 Tankage
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3.3.3 General Conclusions

As a result of the parametric design study of Phase I, the following general

conclusions were reached concerning liquid hydrogen fueled supersonic trans-

port aircraft:

* Configurations with relatively thin wings and large fuselages

(to contain the fuel) provide superior performance.

* LH2 Fueled AST aircraft are capable of ranges in excess of 11,112 km

(6,000 n.mi.) with reasonable gross weights.

* Low mission fuel burn-off dictates wing loading (W/S) of

approximately 195 kg/m 2 (40 lbs/ft2 ) to meet landing field length

of 2,896 m (9,500 ft).

* Low take-off wing loading 220 - 224 kg/m2 (45 - 50 lb/ft2 ) means

aircraft reach L/D max at low q's (high altitude) requiring high

thrust/weight

* High thrust/weight results in satisfactory engine-out takeoff

field length performance even with power cut back required by

noise constraint.

* Turbofan engines are most promising for shorter ranges...

Turbojet engines are most promising for long range, all-

supersonic mission.

* Use of turbojets requires very large engines, deeply throttled

at takeoff, to meet noise constraints.
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3.3.4 Candidate Vehicle Selection

The completion of the Phase I parametric studies required the selection of

the four most promising vehicles as candidates for the Phase II configuration

refinement study. In cooperation with NASA, it was decided the four vehicles

selected should reflect two range capabilities: 7,778 km (4,200 n.mi.), which

represents transatlantic capability; and 10,186 km (5,500 n.mi.), representing

transpacific capability, each with adequate subsonic cruise range either

before or after supersonic cruise. It was also decided the selected vehicles

should be designed for Mach 2.7 cruise, except that one vehicle should be

designed for Mach 2.2 cruise and 7,778 km (4,200 n.mi.) range, to provide a

specific comparison. Finally, although the turbojet engine was demonstrated

to be more economical at long range cruise (Figure 55 ), it was felt that

aircraft with both types of engines should be compared at the shorter range.

As a result, the following requirements were established for the four air-

craft designs which were to be compared leading to the ultimate selection of

one design for detailed study in Phase II.

Cruise Speed Range Engine Type

M 2.7 7,778 km (4,200 n.mi.) Turbofan

M 2.7 7,778 km (4,200 n.mi.) Turbojet

M 2.7 10,186 km (5,500 n.mi.) Turbojet

M 2.2 7,778 km (4,200 n.mi.) Turbojet

Table 12 presents the characteristics of the four vehicles which were picked

from the parametric data generated in Phase I to define the most attractive

candidate aircraft to satisfy the stated requirements. There are several

interesting items to note in comparing some of the values listed in the

table. For example, the wing area of the Mach 2.2 aircraft is shown to be

significantly smaller than that of the Mach 2.7 aircraft of equivalent range

and engine type. The aircraft have wing loadings of 286.5 kg/m2 (58.6 lb/ft2 )

and 227.0 kg/m2 (46.5 lb/ft2), respectively. This is due to the higher aspect

ratio (AR = 2) of the Mach 2.2 airplane compared to only 1.62 for the Mach 2.7.

The wing is sized by airport performance requirements in both cases so the

higher available lift coefficient (0.69) for the Mach 2.2 airplane, compared
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ORIGINAL PAGE IS POOR

0 TABLE 12. CHARACTERISTICS OF SELECTED VEHICLES FROM PHASE I

Vehicle Configuration No. 1 2 3 4

Mach 2.7 2.7 2.7 2.2

Range - km (n.mi.) 7,778 (4,200) 7,778 (4,200) 10,186 (5,500) 7,778 (4,200)

Engine Type Turbofan Turbojet Turbojet Turbojet

T/W .58 .80 .80 .80

Wing Area - m2 (ft2)  743.2 (8,000) 836.1 (9,000) 1,035.8 (11,150) 630.3 (6,785)

0 W/S - kg/m2 (lbs/ft2 )  246 (50.4) 227 (46.5) 242 (49.6) 286 (58.6)

t/c - % 3 3 3 3

Aspect Ratio 1.62 1.62 1.62 2

Gross Wt. kg (lb) 183,024 (403,500) 189,737 (418,300) 250,835 (553,000) 180,392 (397,700)

SFuel Wt.- kg (lb) 45,813 (101,000) 42,774 (94,300) 67,721 (149,300) 43,318 (95,500)
0
\o Zero Fuel Wt.-kg (lb) 137,211 (302,500) 146,863 (324,000) 183,114 (403,700) 137,075 (302,200)

Payload kg (lb) 28;032 (61,800 28,032 (61,800) 28,032 (61,800) 28,032 (61,800)

OEW-kg (ib) 109,179 (240,700) 118,931 (262,200) 155,082 (341,900) 109,043 (240,400)

PL/WG  .153 .148 .112 .155

WH2/WG .25 .228 .27 .24

FAR T.O. Dist.-m (ft) 3,200 (10,500) 2,730 (8,970) 2,865 (9,400) 2,730 (8,950)

FAR Ldg. Dist.-m (ft) 2,860 (9,382) 2,866 (9,404) 2,890 (9,483) 2,896 (9,500)

Average Alt. - Cruise m (ft) 20,733 (68,000) 21,495 (70,500) 21,495 (70,500) 18,900 (62,000)

E Average L/D - Cruise 7.38 7.71 7.69 7.72

Average SFC - Cruise kg/hr/daN (lbs/hr/lb) .581 (.57) .502 (.493) .500 (.491) .456 (.447)

SFC - Subsonic Cruise kg/hr/daN (lbs/hr/lb) .300 (.294) .378 (.371) .378 (.371) .357 (.350)

SFC - Subsonic Loiter kg/hr/daN (ibs/hr/lb) .220 (.216) .359 (.352) .367 (.36) .359 (.352)

DOC - ¢/SM 1.79 1.70 2.02 1.74

0 *Basic Price $xl06  58.3 61.1 78 55.7

*300 Aircraft Production Base



to 0.48 for the lower aspect ratio wing of the Mach 2.7 design, allows a

reduction in wing size and correspondingly higher wing loading.

The Mach 2.2 vehicle shows a slightly lower gross weight than the Mach 2.7

but almost equal fuel consumption. The DOC of the Mach 2.2 is slightly

higher than the 2.7 in spite of its lower cost. This is due to its higher

crew, insurance, and depreciation cost per seat mile which results from

the lower productivity of the slower Mach 2.2 vehicle. (888 flights per

year vs 1039 for the Mach 2.7).

A third interesting point to consider in Table 12 is the comparison between

aircraft #1 and #2, the turbofan vs. the turbojet powered Mach 2.7 vehicles.

The turbofan airplane has a higher SFC in cruise and requires 3,039 kg

(6,700 lbs) more fuel, but its gross and empty weights are significantly

less than those of the turbojet aircraft. Explanations for this also

involve several factors. First, the SFC of the duct-burning turbofan in

both subsonic cruise and loiter is much lower than the counterpart turbojet,

partially offsetting its higher supersonic cruise SFC. Therefore, less

fuel is needed to meet the reserve requirement. Second, the turbofan need

not be throttled as deeply at takeoff to meet the noise limitation so

smaller, lighter engines can be used. Thirdly, because the accumulation

of such factors results in a lower landing weight, the wing area required

to meet the landing distance requirements is smaller, leading to additional

weight saving, finally resulting in the values of OEW, ZFW, and G.W. shown

in the table.
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4.0 PHASE II: POINT DESIGN VEHICLE STUDY

The purpose of Phase II was to establish design, performance, and cost char-

acteristics of a selected configuration of liquid hydrogen fueled supersonic

transport aircraft at a greater level of detail than was possible in Phase I.

The design study focused on definition of structural concepts for both the

aircraft in general and the LH 2 tanks in particular. In addition, a feasible

thermal protection system for the cryogenic tankage was defined. The objec-

tive was to provide confidence in the aircraft performance, weight, and cost

data., and additional guidance for directing further development.

The following sections describe the point design vehicle and explain how the

final configuration was evolved. Its performance, cost, structural design,

and thermal protection system are described. The viability of the concept of

using LH2 as the fuel for an advanced design of supersonic transport air-

craft is then discussed by comparing it to an equivalent design of Jet A-i

fueled aircraft and by outlining major technology development required for

its fruition. Finally, recommendations are made for follow-on studies and

development.

4.1 VEHICLE DESCRIPTION

During the Phase I part of the study it became evident that the real measure

of worth of a hydrogen fueled AST transport aircraft would only be apparent

by comparing it to an equivalent Jet A-i fueled design. Accordingly, the

contractor was directed to focus design attention in Phase II on an aircraft

which would have the same mission performance and be designed to the same

state-of-the-art and ground rules as a Jet A-i fueled vehicle which was con-

currently being studied by Lockheed for NASA - Langley Research Center under

contract NAS 1-12288 (Reference 4). In this section, the design requirements

that were selected to provide compatibility with the reference Jet A-i air-

plane are described, the basis for evolving the characteristics of the "point

design" LH2 AST airplane are explained, the selected airplane configuration

is described, and weight and balance data are provided.
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4.1.1 Design Requirements

As described, an overriding objective in Phase II was to provide a one-for-

one basis for comparing a conventionally fueled (Jet A-1) AST with one fueled

with liquid hydrogen. Conveniently, a design of Jet A-1 AST being studied by

Lockheed for NASA-Langley Research Center under Contract 1-12288 (Reference 4)

matched the cruise speed and range of one of the LH2 AST designs selected at

the end of Phase I as a preferred configuration (Configuration Number 1 in

\Table 12). Accordingly, it was decided to use the following mission require-

ments, taken from the Arrow - Wing Structures Study of Reference 4, as a

basis for design of the Phase II Point-Design LH2 AST aircraft.

Cruise speed Mach 2.7

Range 4200 n.mi.

Payload (234 passengers) 49,000 lb

To assure equivalency in design and evaluation between the Jet A-1 and LH2
aircraft being evolved in the two separate NASA. studies, several changes from

the basic premises used in Phase I of the subject study were made for Phase II.

For example, a more conservative definition of materials and technology state-

of-the-art was assumed for the Jet A-1 aircraft than had been used for the

LH2 studies in Phase I. The Langley study of Jet A-1 aircraft was based on

what was labeled 1981 technology, defined characteristically as use of tita-

nium skin and structure, reinforced with layup'of boron-polyimide composite.

By contrast, in Phase I of the subject study, 1985 technology was defined as

use of from 60 to 90 percent advanced composite materials in the empennage,

fuselage, and wing structures. In addition, the Langley study used more

relaxed noise standards, viz., FAR Part 36, contrasted with FAR Part 36 minus

5 EPNdB for the subject study in Phase I.

Table 13 lists the changes in the Basic Premises which were made to accommo-

date the objective of providing for a direct comparison with a conventionally

fueled hydrocarbon AST design. The point design airplane of Phase II was

designed to these revised Basic Premises.

LOCKHEED
CLIFORNIA COM ANY



TABLE 13

CHANGES IN BASIC GUIDELINES FOR PHASE II

(Refer to Table 2)

Phase I Phase II

Materials and Technology 1985 1981 *

State-of-the-Art

* technology level defined per
agreement for contract NAS 1-12288

Noise FAR 36 minus 5 FAR 36

Cost 1972 dollars 1973 dollars

Payload 61,800 lb. 49,000 lb.

(300 passengers) (234 passengers)

4.1.2 Design Evolution

Payload/Fuel/Structural Arrangements

At the end of the Phase I parametric study several conclusions regarding the

fuel containment assumptions of Phase I (fuel in lower fuselage and inboard

wing) became apparent:

* The wing carry-through structure was severely compromised by the

lower fuselage tanks.

* The small volume of fuel carried in the optimum wing thickness

(3-4 percent) was not worth the 11 percent penalty in wing weight

incurred.

* The underfloor location of the fuselage tanks required a 9.37 kg/m 2

(1.22 lb/ft2 ) penalty in the floor pressure deck and tank support

structure and was not desirable from the standpoint of either

passenger-fuel proximity or relative locations.

As a consequence, at the start of Phase II alternate arrangements and concepts

were studied. These concepts, shown in Figure 58, were qualitatively rated

against the following criteria:

* Passenger-fuel separation distance

* Passenger-fuel relative locations
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LEGEND:

H2 = HYDROGEN TANK -7771 = WING STRUCTURE

C = CARGO E = EQUIPMENT

ARRANGEMENT NO. =

NO. 1
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N22H2

NO. 2

NO. 3
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NO. 4

2 S /// ////PASS

NO. 5.

Figure 58. Candidate Pyload/Tank/Structura l Arrangements
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0 Structural feasibility

* c.g. control

* Passenger seating and accessibility

* Volume utilization

* Option to make tank integral (load-carrying) or non-integral.

The following brief comments are made as to the suitability of each

arrangement:

No. 1: Adequate separation not achieved

Relative arrangement poor

Non-integral (no option). A leak in the forward tank could

result in gaseous hydrogen flowing around (possibly into)

the passenger compartment.

Forward tank must be non-integral (no option)

Structurally feasible

No. 2: Maximum separation

Forward tank must be non-integral

Structurally feasible

c.g. travel impossible

No. 3: Separation adequate

Mid-tank must be non-integral

Structurally feasible

Aft passenger seating not efficient

No. 4: Separation adequate

Tank option available

Structurally feasible

Passenger loading and emergency exits below wing not acceptable.
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No. 5: Separation adequate

Tank option available

Structural feasibility the best

Passenger seating and loading OK

Volume utilization best

Arrangement number 5 was chosen on the basis of the above arguments.

Establishment of the basic arrangement allowed consideration of the most effi-

cient seating.arrangement. The trade-off involved was the fuselage cross-

section area (number of seats abreast) vs the fuselage total length including

crew compartment, tanks and tail cone. Consideration was given to 4, 5, 6,

and 7 abreast (on each deck), with 6 abreast being selected as the best com-

promise between weight, ground rotation requirements, and fuselage wave drag

(as influenced by the fineness ratio).

A third design trade-off concerned the choice between a round fuselage vs. a

double-lobe, and mid-wing vs low-wing. Figure 59 is a sample layout showing

some of the areas and volumes involved in the comparison. The design selected

was the double-lobe, low-wing arrangement which gives the best combination of

frontal area and compartment length.

Tankage/Thermal Protection System (TPS)

In accordance with the emphasis of the Phase II study, further consideration

was given to the tankage and thermal protection system concepts. The minimum

criteria for a fuel containment system operating in an air transport environ-

ment were assumed to be as follows:

* The use of helium as a purge or pressurant gas is not feasible from

the standpoints of logistics, availability, and cost.

* Systems using expendable insulation (such as CO2 frost) are not

practical due to the turn-around time required.

* Safety at least equal to hydrocarbon fuel systems with regard to

leakage, fail-safe provisions, and crash loads must be assured.
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* Tankage design life = 50,000 hours. Thermal protection system

same objective with reasonable maintenance.

* Fail-safe tank structure based on same design consideration as

pressurized cabins.

* All components accessible for inspection and repair with minimum

manhours.

The candidate possibilities consist of combinations of non-integral and inte-

gral tankage, together with both internal and external insulation. Non-

integral tankage is required to take only thermal stress, pressurization and

fuel dynamic loads, and is supported by the vehicle basic structure. On the

other hand, since integral tankage is the vehicle structure (becomes an

"integral" part of the basic structure) in addition to the above, loads, it

must be capable of withstanding all the usual fuselage axial, bending, and

shear stresses resulting from the normal aircraft loading conditions. In addi-

tion, it requires an interconnect system to transfer loads from the adjacent

hot fuselage structure to the tank with a minimum or acceptable heat leak.

Figure 60 is a sketch of the non-integral tank concept with external insula-

tion. The detail shown is a section of the upper forward fuselage tank.

Also shown is the tank mounting schematic. To inspect or repair the basic

vehicle structure or the insulation, the vehicle must be separated and the

tank removed by sliding it out on the removal rail. To prevent cryo-pumping,

the insulation must be closed cell as shown or be enclosed in a vapor barrier.

Figure 51 illustrates two integral tank concepts, one for 1981 technology and

the other a later, or postulated "198X" technology, dependent on the develop-

ment items listed in the notes.

To permit a comparison of the various concepts, preliminary estimates were

made of the installed fuel weight fractions (kg/kg of LH2 ) and are shown in

Table 14 together with comments on the component accessibility and technology

required. The 198X is included only as an example of the potential gains that

might be possible with advanced technology.

Preceding page blank
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Figure 60. 1975 Technology - Non-Integral Tank Concept
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TABLE 14

TANKAGE/THERMAL PROTECTION CONCEPT COMPARISON

Concept

Non-
Tank Design Integral Integral

Technology Level 1975 1981 198X

Fuel Wt Fraction: (kg/kg of LH2 )

Tank 0.146 0.17 0.135

TPS 0.11 0.11 0.125

Heat Shield 0 0.06 0

Fuselage Struct 0.152 0 0

Total 0.408 0.340 0.260

Volumetric Efficiency 0.855 0.927 0.936

Est TOGW* - kg 158,757 151,408 149,503

(Ib) (350,000) (333,800) (329,600)

Mission Fuel - kg 32,885 31,842 30,935

(lb) (72,500) (70,200) (68,200)

Inspection/Repair Remove Remove Remove
Tank Heat Heat

Shield Shield

*Does not include volume effects on drag.

Consideration of this and the thermodynamic preliminary analysis resulted in the

choice of the integral, 1981 technology concept as the baseline for Phase II -

and allowed a more detailed analysis which is reported in sections 4.4 and 4.5.

Heat Shield Design

The integral tank concept selected for Phase II requires the use of an outer

cover or heat shield with the following design requirements:

* Must be readily removable for inspection of the insulation and for

repair of the tank.
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* Compatible with the vehicle exterior thermal and acoustic

environment

* Mounting scheme - must accommodate tank shrinkage and heat shield

expansion.

* Must be flutter free with differential air loads up to approximately

1 psig.

* Shall preferably have low heat transfer characteristics to allow a

possible reduction in the tank insulation thickness.

* The heat shield standoffs or supports shall have a low conductance

to minimize heat leak to the tank.

* Must be compatible with gaseous hydrogen (leakage)

Various schemes used in past Lockheed studies were reviewed for applicability

but while the concepts were suitable they were mostly for hypersonic vehicles

so the materials were costly and weights excessive. Using the above require-

ments and background, the concept described in paragraph 4.4.2.2 (see Fig. 113,

Structural Arrangement - sht 2) was chosen. The outer panels are of

honeycomb construction consisting of a fiberglass/polyimide core with

graphite/kevlar polyimide faces, selected for strength/weight, thermal

compatibility, low heat conductance, and low cost.

The 0.019m (3/4 in.) thick panels are approximately 1.52 4m x 1.524m (60 in.

x 60 in.), constrained at the edges but free to expand. A center support is

used as a fixed support and also locates the panel. Silicone rubber seals

are provided at all panel joints as back-up to the edge retainer strips. The

retainer strips are held by shoulder bolts to prevent excessive clamping

pressure. The circumferential edges of the panels rest against KEL-F

combination insulator-wear strips. The panels are supported by circumferential

heat shield stand-offs of low conductance reinforced fiberglass rings held by

aluminum clips weld-bonded to the tank wall. Slip joints are provided where

required between the support clips. Removal of any panel is possible without

disturbing an adjacent panel.
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4.1.3 Vehicle Description

General Arrangement

The general arrangement of the liquid hydrogen fueled (LH2 ) AST Phase II Point

Design Vehicle is presented in Figure 62.

For comparison, the Jet A-1 fueled M2.7 Arrow Wing Configuration developed by

Lockheed under NASA contract NAS 1-12288 (Reference 4), which is used as a

baseline for comparison in the present study, is shown in Figure 63. Compari-

son of the two configurations shows that the LH2 fueled aircraft has a con-

siderably smaller wing. However, its fuselage is both longer and has increased

cross sectional area.

The arrow wing of the CL1701-7-1 Phase II Point Design (Figure 62) is scaled

down from the CL1606-4 Jet A-1 AST (Figure 63) arrow wing to reflect the

lower aircraft weight of the LH2.fueled'airplane. In sizing the wing a wing

loading of approximately 200.2 kg/m2 (41 lbs/sq ft) at the design landing

weight is used for both aircraft to provide equivalent landing performance.

The thin, flexible, highly swept and cambered wing is continuous under the

fuselage except at the forward apex of the wing.

Flight control and high lift devices for the CL1701-7-1, as shown in Fig-

ure 62, are similar to-those for the CL1606-4-1 aircraft in Figure 63. Pitch

control is obtained from an all-moving horizontal stabilizer with a geared

elevator while yaw control is provided by a fuselage-mounted all-moving

vertical tail with a geared rudder. A fixed vertical fin is located on each

side of the wing. The outer wing includes ailerons for roll control at low

speeds and Krueger leading edge flaps for use at subsonic and transonic.

speeds.. Plain spoilers next to the fuselage are used for deceleration on

the ground. The Fowler inboard trailing edge flaps increase lift at low

speeds while flaperons function, dependent on speed, as either high lift or

roll control devices.

Wing-mounted main landing gears retract forward into the wing just outboard

of the fuselage. Four duct burning turbofan engines, each with 204,650 newtons

(46,000 pounds) of uninstalled thrust, are mounted in underwing pods having

axisymmetric inlets and thrust reversers near the wing trailing edge.
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The fuselage of the CL1701-7 aircraft has a deep, double lobe cross section.

Its length requires the aft end to be swept up slightly to obtain the scrape

angle adequate for the desired takeoff and landing performance. The static

ground angle, scrape angle, and wing incidence shown for the CL1701-7 in Fig-

ure 62 are identical to the corresponding values for the CL1606-4 in Fig-

ure 63.

A convenient tabular summary comparing major dimensional, weight and other data

for the CL1701-7 and the Jet A-i fueled CL1606-4 is given in Section 5.1.

Inboard Profile

The interior arrangement of the Phase II Point Design, as shown in Figure 64,

illustrates the passenger seating arrangement and the location of the liquid

hydrogen fuel tanks.

The large portion of fuselage volume devoted to LH2 stowage is readily appar-

ent. In contrast to the Jet A-i fueled CL1606-4 aircraft of Figure 63, no fuel

is carried in the wing of the Phase II Point Design. Instead, all LH2 fuel is

stowed in four large fuselage tanks arranged so that two are forward, and two

are aft, of a central payload section. Balance and c.g. management are facili-

tated by the location of fuel both forward and aft of the aircraft c.g. Use

of fuselage stowage for fuel also provides an efficient ratio of tank volume

to tank surface area and minimizes the fuel plumbing and tank insulation

required. In addition, the integral tank structure also serves as the fuse-

lage primary structure. Both the forward and aft fuel tank sections are

shown, in Figure 64, as being divided into two separate tanks by means of a

vertical divider. This divider is not a pressure bulkhead since provision is

made for pressure equalization between the two compartments of each tank. It

simply serves to provide fuel to each engine from a separate compartment.

With the payload in close proximity to the aircraft c.g., minimum c.g. move-

ment results when the passenger and/or cargo load is varied. Passengers are

seated six abreast on both levels of a double deck arrangement. This not only

provides spacious accommodations but also minimizes the length of the payload

section. Figure 65 shows the interior arrangement and passenger seating of the

CL1606-4 Jet A-i fueled aircraft.
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Cargo is stowed at the forward end of the lower deck so that the cutout for

container installation/removal results in cutting only the relatively lightly

loaded spar caps at the wing apex. Some of the electrical/electronic equip-

ment is carried in the domed cavities in the pressure bulkheads at each end

of the cabin in both decks to provide both good accessibility and a controlled

environment. The space below the floor and between the MLG wells is used for

aircraft equipment and service centers. Components large enough to require

cutting spar caps to obtain sufficient space can be accommodated with rela-

tively low penalty since the spar cap loads are not high in this area.

Throughout the length of the payload section, fuel supply and vent lines are

contained in a dorsal fairing above the fuselage so that any fuel vapors

accidentally released will tend to rise away from the aircraft and minimize

damage possibilities. Pressure bulkheads domed in opposite directions are

shown in Figure 64 at the fuel tank/cabin interface joints. As described in

a subsequent section, a truss type interstage structure provides the connec-

tion. In an alternate design which also should be considered, the end bulk-

heads would be domed in a nested, rather than opposed, manner. This approach

would result in a shortened fuselage.

Landing Gear Installation

Figure 66 depicts the main landing gear (MLG) design used in the Phase II

Point Design aircraft. As shown, the MLG is wing mounted and retracts forward

into a well entirely within the wing. The preliminary study in Figure 66 indi-

cates that the MLG can be stowed within the existing wing contour if a small

local bump in the upper surface is provided above the joint between the upper

and lower scissors. It is felt that further design and development should

permit the elimination of this small bump and thereby avoid complexity in the

upper surface structure as well as a small potential increase in drag.

The MLG design is very nearly identical to that used in the CL1606-4 aircraft

of Figure 63. The major difference is that 12 wheels per strut are used in-

stead of the special 18 wheel per strut MLG designed for the Jet A-i CL1606-4.

The 18 wheel per strut design in the CL1606-4 was necessary to avoid wing
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thickening or bumps in the wing upper surface of the CL1606-4. In the Phase

II Point Design, the greatly reduced aircraft weight permits the use of a

more conventional 12 wheel per strut arrangement.

The nose landing gear (NLG) of the Phase II Point Design is mounted slightly

forward of the forward LH2 tank and retracts forward to provide a free-fall

extension capability. As shown in the interior arrangement of Figure 64, the

weather vision nose must be configured so that its operation is compatible

with the movement of the NLG.

An evaluation of tip-over potential should be made during any further design

development. It is possible that such an investigation may show the need to

move the MLG farther outboard. Tip-over considerations may be expected to be

more severe in the Phase II Point Design, in relation to the Jet A-1 fueled

CL1606-4, because the aircraft's vertical c.g. tends to be higher above the

ground.

In the Jet A-1 fueled CL1606-4, a design objective is the stowage of the

maximum portion of fuel in the thermally protected wing center section to

make the maximum use of the fuel as a heat sink. This is one of the factors

tending to favor a forward retracting MLG in the CL1606-4. In the Phase II

Point Design, the MLG design is not so constrained (since no fuel is carried

in the wing) and other MLG designs, such as inboard retracting types, could

be considered. After review of a variety of MLG designs, however, the for-

ward retracting MLG shown in Figure 66 has been selected as a good repre-

sentative arrangement.

Propulsion Installation

The inboard engine installation for the CL1701-7 Phase II Point Design, Fig-

ure 67, closely follows the corresponding-design for the Jet A-1 fueled

CL1606-4. Each engine is installed in an underwing pod and uses an axisym-

metric mixed compression inlet. Thrust reverser doors are located near the

trailing edge. Each pod is located at the same percentage of the wing span

as in the.CL1606-4 aircraft. In the fore and aft direction, the pods are

shown approximately in the same relative position as in the CL1606-4. Since

the longitudinal position of the engines relates to wave drag, wing flutter
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and other considerations, the final longitudinal location of the engines

should reflect an evaluation of these factors before determination of the

most desirable position. Such an evaluation has been performed for the

CL1606-4 aircraft.

A duct burning turbofan engine configured by Calac and providing 204,650 newtons

(46,000 pounds) of SLS uninstalled thrust is located in each pod. A four point

mounting system is shown, with one point designed to withstand thrust and drag

loads. Appropriate damage tolerance capabilities are incorporated in the sys-

tem, particularly at the thrust/drag mount.

Hydraulic pumps and other aircraft system components are shown mounted on a

remote engine driven gearbox installed in the wing box. Also located in that

area but not shown on the drawing would be the heat exchanger to convert LH2

to gaseous form before introduction into the combustion process (see Fig-

ure 83). It is anticipated that access to some of these components can be

obtained through the rear beam. For others, access doors through the wing

surfaces are required. In further design development, additional evaluation

is recommended on the feasibility of installing most, or all, of the com-

ponents in the space behind the rear spar. The very limited space available

makes this objective difficult to achieve. Nevertheless, the improved access

and reduced structural penalty potentially achievable justify further efforts

in this area. Installation of system components in the wing, rather than the

engine pod, is based on the desire to minimize the size of the engine pod.

4.1.3.1 Aerodynamic Characteristics

The aerodynamic characteristics for the Phase II "Point Design Vehicle" Fig-

ure 62, were developed primarily from the parametric data presented in Sec-

tion 3.1.2. The pertinent data are collected and presented here for conven-

ience, Figures 68 through 73. Certain of the data, particularly the ground

effect increments, have been updated. These changes reflect the results of

detailed analyses of AST wind tunnel test data in ground effect. While these

changes are relatively significant as compared to the earlier data, they are

not expected to have a significant effect on overall mission performance.

This is reasonable since airport performance did not impose stringent demands

on aircraft sizing in the earlier studies.
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The wing camber drag increment (Figure 74) is essentially a computer

programming device to permit the calculation of zero-lift drag and minimum

drag coefficients for the development of high speed lift-drag polar. The

increment was calculated from wind tunnel test data.

4.1.3.2 Propulsion System Description

At the start of the Phase II effort it was suspected from inspection of the

Phase I mission profiles that the use of the maximum duct burning temperature

of 22000 K (39600 R) during climb (Mach 0.99 to start-of-cruise at 2.7) provided

thrust levels with the turbofan engines in excess of that required for maxi-

mum range efficiency (km/kg). Accordingly, a series of ASSET runs were made

limiting this temperature during climb. The vehicle gross weight, wing load-

ing, take-off distance and other constraints were held constant. The resulting

effect on total range vs the maximum duct burning temperature is shown in

Figure 75. As a result of the trend shown, a more modest temperature of

13670K(24600 R) was selected for the Phase II study. The engine weight was

then reduced approximately 5 percent to reflect this 8330K (15000 R) reduction

in maximum operating duct temperature.

Cycle characteristics for the duct burning turbofan engine used for the point

design aircraft in Phase II are shown by Table 15, a schematic of the engine

flow path is shown by Figure 26, and general nacelle dimensions, weights,

thrust size, and scaling data are shown by Figure 76. Figures 77, 78, 79, 80,

81 and 62 show the engine's installed performance.

The selected blow-in-door exhaust nozzle system provides for excellent high

speed aft engine body drag and aerodynamic aircraft integration when used in

conjunction with a turbofan. The blow-in-door nozzle, by virtue of its ter-

tiary airflow induced through the blow-in-doors at low flight speeds and its

aerodynamically actuated secondary nozzle trailing edges, also produces rela-

tively good subsonic and transonic nozzle performance. Further, the tertiary

flow mixes with the high velocity exhaust gases and acts as a sound suppressor

during takeoff. It is estimated that this could reduce takeoff noise as much

as 5 EPNdB.
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TABLE 15

LIQUID HYDROGEN DUCT BURNING TURBOFAN CYCLE CHARACTERISTICS
(SLS, UNINSTALLED)

- PHASE II POINT DESIGN -

Engine Designation LH2TF-1

Engine Type DB TF

Design Cruise Mach 2.7

Max Thrust 36160 daN (81300 ib)

Specific Fuel Consumption 0.458 kg/hr/daN (0.449 lb/hr/lb)

Corrected Airflow - wNr/e 465 kg/sec (1025 ib/sec)

Bypass Ratio 4.4

Fan Pressure Ratio 3.0

Fan Adiabatic Efficient 0.866

Compressor Pressure Ratio 8.33

Compressor Adiabatic Efficiency 0.871

Overall Pressure Ratio 25.0

Nozzle Velocity Coefficient (Duct) 0.981

Nozzle Velocity Coefficient (Primary) 0.981

Max Turbine Inlet Temp OF 19220 K (34600F)

Max Duct Burning Temp OF 1367K (24600R)

Fuel Heating Value 119430 kj/kg (51590 BTU/lb)

Peak F an Polytropic Efficiency 0.900

Peak Compressor Polytropic Efficiency 0.915

HP Turbine Adiabatic Efficiency 0.920

LP Turbine Adiabatic Efficiency 0.910

Primary Burner Efficiency 1.000

Duct Bruner Efficiency 0.916

Primary Burner Pressure Loss Ratio 0.060

Duct Burner Pressure Loss Ratio 0.071

Primary Nozzle Pressure Loss Ratio 0.005

Thrust to Engine wt Ratio 7.3 daN/kg 714 lb/lb
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0 -PHASE II POINT DESIGN-

S0.5
SPARAMETER REFERENCE VALUE FNSLS

FNSLS, MAX +daN(LB)t 36452 (81330) DFNSLSREF/

AC, M2 (FT 2 )  3.010 (32.4) L L FNSLS / 0.35
DCOMP, CM (IN) 201.4 (79.3) FNSLSREF

DMAX, CM (IN) 235.0 (92.5)
LINLE T  = 2.56 x DCOMP

DNO2, CM (IN) 235.0 (92.5) FNSLS
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Figure 76. Mach 2.7 Hydrogen Fueled Duct Burning Turbofan Nacelle
Dimensions and Scaling Data



AST MACH 2.7 DUCT-BURNING TURBOFAN LH2TF-1 STD + 15C

U.S. STANDARD ATMOSPHERE 1962
DTAM = 15C (27.00F)
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AUGMENTED MAX CLIMB

AST MACH 2.7 DUCT-BURNING TURBOFAN LH2-1

U.S. STANDARD ATMOSPHERE 1962
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Figure 78. Installed Flight Performance - Augmented Max Climb
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AUGMENTED MAX CLIMB

AST MACH 2.7 DUCT-BURNING TURBOFAN LH2-1
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Figure 79. Installed Flight.Performance -Augmented Max Climb



NON-AUGMENTED PART POWER
AST MACH 2.7 DUCT-BURNING TURBOFAN LH2-1

U.S. STANDARD ATMOSPHERE 1962
1524 M (5000 FT)
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Figure 80. Instaled Flight Performance - Non-Auented Part Power
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Figure 80. Installed Flight Performance -Non-Augmented Part Power



NON-AUGMENTED PART POWER

AST MACH 2.7 DUCT-BURNING TURBOFAN LH2-1

U.S. STANDARD ATMOSPHERE 1962
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Figure 81. Installed Flight Performance - Non-Augmented Part Power
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AUGMENTED PART POWER
AST MACH 2.7 DUCT-BURNING TURBOFAN LH2-1

U.S. STANDARD ATMOSPHERE 1962
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Figure 82. Installed Flight Performance - Augmented Part Power
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The inlet is an adaptation of the Boeing 2707 SST air intake (References 9

and 10) and is shown in Figure 67. The design is a mixed-compression axi-

symmetric intake, incorporating a translating centerbody and four movable cowl

panels (throat doors), eight butterfly-type secondary air valves, four over-

board bypass doors, and eight aerodynamically operated vortex valves. The

vortex valves are located in the cowl at the intake throat and are used for

increasing normal shock stability in the started mode.

During supersonic cruise (Mach 2.7), the centerbody is fully retracted. In

this condition the conical shock from the centerbody tip is located close to

the cowl lip. The centerbody translates forward to increase the throat area

for off-design operation. During transonic and subsonic flight, it is

extended to its maximum translation of 1.25 times the cowl lip radius. The

throat doors move between parallel beam walls while rotating about hinge lines

near the cowl lip. Position of the throat doors is a scheduled function of

the centerbody position.

The overboard bypass doors are activated when large amounts of air must be

removed from the intake. On the normal climb and acceleration placard the

bypass doors are closed. The doors open to a maximum of 31.50 from the

closed position. At this opening the aft facing discharge area is equal to

45 percent of the lip area.

The voztex valves are fluidic devices containing no moving parts. The valves

automatically react to small airflow disturbances in the intake, maintaining

high intake performance during these disturbances.

In determining the size of the intake, it was essential to avoid overboard

bypass airflow during cruise to minimize drag. The cowl lip area was sized

to match the standard-day engine cruise power demand. For maximum power

demand on a standard or cold day, the engine rpm is trimmed to avoid excessive

supercritical intake operation. On a hot day with the engine operating at

design rpm, the excess intake airflow supply is discharged through the secon-

dary nozzle via the secondary air system. The overall system is matched such

that essentially no overboard bypass.airflow is needed during normal climb and

cruise intake operation.

161
LOCKHEED
CALIFORNIA COMPANY



4.1.3.3 Fuel System Description

The fuel system (Figure 83) consists of four pressurized and insulated tanks

arranged in tandem pairs in the forward and aft fuselage sections, insulated

feed lines to each of four turbofan engines and one auxiliary power unit, heat

exchangers to transfer airframe and engine heat loads to the cryogenic fuel,

fuel quantity gauging equipment, refueling, defueling and jettison

subsystems.

Tank Vent and Pressurization - To prevent pump cavitation and reduce fuel

flashing losses, the fuel tanks are maintained at a pressure of

138,000 newton/m2 (20 psia) by an absolute pressure regulator located between

the common vent line for all fuel tanks and a flame arrestor which permits

overboard discharge of gaseous boil-off without the hazard of flame propaga-

tion back to the fuel tanks. If the tank pressure drops below

124,000 newton/m2 (18 psia) because of exceptionally high engine fuel demand,

a secondary absolute pressure regulator located in the No. 4 engine feed lines

opens allowing a small amount of fuel to be vaporized by heat from the air-

frame heat loads before it is conveyed to the tanks through the normal vent

system.

In the event tank pressure exceeds 145,000 newton/m2 (21 psi) above free

stream ambient, a pressure relief valve opens to bleed off the excess pressure

through the vent line flame arrestor. If, for any reason, the tank pressure

falls below ambient outside pressure, suction relief is provided at

14,000 newton/m2 (2 psi) below ambient to prevent catastrophic collapse of the

tanks. This condition could only exist if all of the fuel had been exhausted

during a descent.

A boil-off recovery adaptor and valve are provided to minimize boil-off losses

on the ground. This system permits the operator to return gaseous boil-off to

ground storage facilities for reliquification.

Vent openings are located in the forward and aft ends of each tank. Float-

operated vent valves in the opening nearest the vent box prevent fuel from

flowing by gravity into the vent box. Liquid fuel which collects in the vent

box is drained into the adjacent fuel tank through a float-operated drain valve.
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Propulsion Engine Feed System - Each fuel tank is normally connected to its

identically numbered engine. However, a system of cross-feed valves permits

any one tank to supply fuel to any engine if required or, by properly

sequencing the operations of the cross-feed and refueling valves, permits

transfer of fuel from one tank to another.

Two boost pumps are located in a surge box in each tank to ensure fuel avail-

ability and to prevent fuel starvation during aircraft maneuvering at low

fuel levels. The boost pumps are designed to pump boiling hydrogen and to

supply it to the main engine pumps in a subcooled state by means of vacuum-

jacketed feed lines. All airframe and engine heat loads, with the exception

of the tank pressurization heat loads, are added downstream of the high-

pressure engine pumps.

APU Feed System - The auxiliary power unit is operated on gaseous hydrogen,

thereby minimizing boil-off losses during the considerable periods of APU

operation while on the ground. APU feed is available from the common tank

vent line. If insufficient boil-off is released from the tanks, due to the

presence of super-cooled hydrogen just subsequent to refueling, operation of

the No. 4 tank-mounted boost pump will maintain gas flow through the secon-

dary coolant heat exchanger at 124,000 newton/m2 (18 psia) to the APU.

Refueling and Defueling System - All tanks are refueled through a pair of

pressure fueling adaptors located at the bottom of the fuselage. Part of the
refueliang manifold is common with the engine feed lines. Inside the tank,
the fueling manifold is perforated along its entire length to distribute the

liquid hydrogen uniformly over all of the tank walls, thus minimizing the tank

wall thermal stresses. A dual fuel level control pilot valve in each tank

shuts off the tank fueling valve when the respective tank has reached its full

level. Integral with the float valve is a solenoid valve which permits manual
or preset shut-off of the valve at any tank level.

Prior to refueling tanks that have contained air, the fueling system must be
purged by an inert medium (e.g., gaseous nitrogen) to remove all oxygen,

followed by gaseous hydrogen to remove all inerting gas. The purge system

will utilize the boil-off recovery adaptor and valve to discharge the purge
gases around the pressure relief valve and overboard.
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Defueling may be accomplished through the defueling valve to the fueling

adaptors by operating the boost pumps with open cross-feed valves. The tanks

may be defueled individually or simultaneously.

Fuel Jettison System - A jettisoning system is provided to permit dumping the

fuel from any or all tanks in flight. This system operates similarly to the

defueling system except that fuel is routed to a dump mast through a jettison

valve and flame arrestor.

Fuel Quantity Indicating System - Capacitance gauges are used to measure fuel

volumes. The units are calibrated to indicate fuel quantity in pounds at the

fuel management panel.

Fuel System Design Considerations - As a design objective, fuel system com-

ponents such as pumps and valves should be designed for quick removal and

field replacement in a manner commensurate with present commercial operation.

System failure provisions should also provide for back-up of critical dispatch

items as in current practice.

The broad aspects of'flight safety require consideration and development of

fuel system components and arrangement in terms of malfunction and leak

detection, isolation, inerting and/or purging and fire containment. Safety

criteria and acceptable design practices must be established in relation to

and based on current practice realizing the unique properties of a cryogenic

fuel with the ignition energy and temperature levels of hydrogen.

4.1.4 Mass Properties

4.1.4.1 Weight Statement

The Phase II point design vehicle reflects the latest selected concepts for

wing and fuselage structure as derived from the Arrow-Wing Structure Study

(NAS1-12288) (Reference 4) and as determined by analysis performed during

this study. The following changes were made in the bases used for calculating

weights from that used in Phase I:

Wing -.Removed 11.2 percent penalty for LH2 tanks in wing. All fuel is

now in integral fuselage tanks.
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Fuselage - Removed 9.37 kg/m 2 (1.92 psf) penalty for passenger cabin

pressure deck over fuel tanks.

Tanks (Fuel System) - The Phase II design study reported in Sections 4.4.2

and 4.5.3, resulted in the following installed weight fractions for the

tank plus support, thermal protection system and heat shield:

Tank and supports = 0.196

Insulation = 0.060 kg/kg LH2

Heat Shield = 0.080

Engines - Revised thrust/weight ratio due to decreased maximum duct

temperature

ECS - 8 percent lighter than JP-fueled AST due to availability of LH2

fuel as a heat sink.

Auxiliary Gear - Allowance for customer options and manufacturing

tolerance = 898 kg (1,980 pounds)

Unusable Fuel - Increased to .030 Kg/Kg LH2 (including boil-off) as a

result of analysis reported in Section 4.5.3. This is part of Standard

Items in the Weight Statement shown in Table 16.

The vehicle is presently configured with approximately equal distribution of

hydrogen fuel between the forward and aft tanks. Each tank has a volume of

339.8 cubic meters (11,400 cubic feet). With a usable fuel weight per tank

of 21,763 kg (47,980 pounds) and a density of 67.28 kg/m 3 (4.43 pounds per

cubic fcot), there is an excess volume of 16.28 cubic meters (600 cubic feet)

per tank. This provides a 2 percent expansion space (ullage) and 3 percent

extra fuel for boil-off allowance.

Table 16 is a group weight statement compiled for the point design airplane.

For typical weight fractions, see the Weight Statement page of the ASSET com-

puter printout reproduced in Appendix B.
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TABLE 16

WEIGHT STATEMENT

CL 1701-7 LH2-AST D-B TURBOFAN ENGINES

t/c AR W/S T/W
(lb/ft2 ) (Ib/ib) Weight

3.00 1.62 53.5 0.500 (Pounds) Kilograms

Take-Off Weight (368,054) 166,946

Fuel Available 95,960 43,527

Zero Fuel Weight (272,094) 123,419

Payload 49,000 22,226

Operating Weight (223,094) 101,193

Operating Items 5,358 2,430

Standard Items 4,678 2,122

Empty Weight (213,058) 96,641

Wing 47,205 21,412

Tail 6,914 3,136

Body 44,646 20,251

Landing Gear 17,201 7,802

Surface Controls 4,620 2,096

Nacelle and Engine Section 2,734 1,240

Propulsion (57,996) 26,307

Engines 24,890 11,290

Thrust Reversal 0

Air Induction System 9,854 4,470

Fuel System 21,927 9,946

Engine Controls and Starter 1,324 601

Instruments 1,092 495

Hydraulics 2,797 1,269

Electrical 4,593 2,083

Avionics 1,900 862

Furnishings and Equipment 11,500 5,216

Environmental Control System 7,800 3,574

Auxiliary Gear 1,980 898
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4.1.4.2 Material Utilization

The utilization and distribution of materials for the major structural com-

ponents of the LH2 AST point design airplane is shown in Table 17. Material

usage in the wing, empennage, and those portions of the fuselage not affected

by the presence of the liquid hydrogen fuel is based on latest data from the

Arrow-Wing Structure Study (Reference 4), modified to fit the requirements of

the point design airplane. The structural requirements which are peculiar to

the subject LH2 study airplane are described in Section 4.4.2. This work

served as a basis for the appropriate weights listed in Table 17.

4.1.4.3 Vehicle Balance and Moment of Inertia

Figure 84 presents the vehicle center of gravity travel and moment of inertia

variations with changes in fuel and payload weight.
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TABLE 17

MATERIALS UTILIZATION - kg (ib)

Material

Component Alum. Titan. Steel Compos, Other Total

Wing 985 18,329 428 1,328 342 21,412

(2,171) (40,408) (944) (2,927) (755) (47,205)

Tail 141 2,914 31 0 50 3,136

(311) (6,423) (69) (111) (6,914)

Fuselage 6,601 10,409 365 506 2,370 20,251

(14,554) (22,948) (804) (1,116) (5,224) (44,646)

Landing Gear 8 1,950 2,996 0 2,848 7,802

(17) (4,300) (6,605) (6,279) (17,201)

Nacelles 24 184 412 0 O 620

(52) (40o6) (909) o 0 (1,367)

Air Induction 206 3,960 45 0 259 4,470

(453) (8,731) (99) o .(571) (9,854)

Surface Contr 503 94 440 31 1,027 2,095

(1,109) (208) (970) (69) (2,264) (4,620)

Totals 8,468 37,840 4,717 1,865 6,896 59,786

(18,667) (83,424) (10,400) (4,112) (15,204) (131,807)
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4.2 VEHICLE PERFOR1ANCE

Previous sections have described the size, shape, and general arrangement

of the Phase II point design airplane. This section describes its basic

design and performance characteristics, starting with a brief explanation

of the process by which the choice of design relationships was narrowed to the

point where further optimization produced negligible benefits, resulting

in selection of the specified design. A number of design sensitivities are

explored to establish the effect minor changes in the vehicle might have on

its performance, and finally, a summary of the environmental characteristics

of the aircraft is presented.

4.2.1 Design and Performance Characteristics

Because of the significant changes in the design requirements for the

Phase II airplane, as described in Section 4.1.1, compared to those used in

Phase I, the first task of Phase II was to do a basic resizing. Once this

was done, alternate passenger/fuel tank arrangements could be considered,

structural concepts studied, and thermal protection systems explored as

discussed in Section 4.1.2, to develop preferred designs and determine

realistic weights. Finally, the characteristics of the Phase II point

design vehicle were determined using the ASSET program on the basis of up-

dated propulsion, aerodynamic, weight, and cost inputs, and in accordance

with the changed premises listed in Table 18. The principal trade-off in-

volved was that of determining the combination of wing loading (W/S) and

thrust/weight (T/W) at which the three constraints of the 2,896 m (9,500 ft)

landing field length, and the FAR 36 sideline noise and flyover noise would

be balanced. As described in Section 3, the constraint of the 3,200 m

(10,500 ft) engine-out takeoff field length is not critical if the other

3 constraints are met. Figure 85 illustrates the relation between noise,

field length, '/S, and T/W for LH2 AST's using the duct burning turbofan

engine defined for Phase II.

The final point design vehicle selected was that vehicle which met the above

criteria with minimum weight as indicated on the figure. Characteristics

of this vehicle are summarized in Table 18. Copies of sheets from the actual
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TABLE 18. POINT DESIGN VEHICLE CHARACTERISTICS

Performance:

Take-off Weight 166,946 kg (368,054 ibs)

Range 7,778 km (4,200 n.mi.)

Payload 22,226 kg (49,000 ibs)

Wing Loading 261.2 kg/m 2 (53.5 ib/ft2)

Thrust/Weight (SLS, Uninstalled) 0.50

Thrust/Eng. (SLS, Uninstalled) 204,618 newton (46,000 lbs)

Wing Area 639.2 m2 (6,880 ft2)

Fuselage Length 100 m (328 ft)

FAR T.O. Field Length 2,179 m (7.150 ft)

FAR Ldg. Field Length 2,894 m (9,496 ft)

Landing Approach Speed 80.3 m/sec (156 keas)

Average Cruise L/D 6.99

Average Cruise SFC 0.572 kg/hr/daN (0.561 lbs/hr/lb)

Average Cruise Altitude 20,574 m (67,500 ft)

Mission Fuel 36,940 kg (81,440 lbs)

Mission Time 3.45 hrs

Weights:

Structures 55,937 kg (123,320 lbs)

Propulsion* 26,306 kg (57,996 lbs)

Equipment and Furnishings** 9,689 kg (21,360 lbs)

Empty Weight 96,641 kg (213, 058 lbs)

Standard + Operating Items 4,552 kg (10,036 lbs)

Operating Empty Weight (OEW) 101,193 kg (223,094 lbs)

Payload 22,226 kg (49,000 lbs)

Zero Fuel Weight (ZFW) 123,419 kg (272,094 ibs)

Fuel - Total 43,209 kg (95,960 lbs)

Take-off Gross Weight 166,946 kg (368,054 lbs)

*Includes tanks, thermal protection system and fuel system

**Includes 898 Kg (1980 lb.) for Customer options
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computer printouts which contain a greater level of detail are included as

Appendix B.

4.2.2 Sensitivity Analysis

The point design vehicle was perturbed on the basis of range, inert weight, SFC,

subsonic cruise leg, payload, noise, drag, and landing field length to deter-

mine its sensitivity to each of these factors. Figures 85 thru 95 show the

results of these excursions, together with approximate sensitivity factors

where appropriate.

Figure 86 examines the growth of the point design aircraft if the design

mission range were increased. To accomodate the increased fuel required the

fuselage was allowed to grow in length up to a maximum of 114.3 m (374 ft)

at 10,000 km (5,400 n.mi.). In each case the vehicle is resized and the

constraints of landing field length and noise held constant. Since the

landing wing loading is held constant to meet the landing distance, the

takeoff wing loading can be increased slightly as more mission fuel is con-

sumed. FAR 36 allows increasing takeoff and flyover noise as gross weight

is increased which results in a slightly higher allowable jet velocity. The

result is that the turbofan engine power cut-back can be reduced. More

usable thrust allows a slight decrease in the installed thrust-to-weight as

shown. This increases the takeoff field length but it remains well within

the 3,200 m (10,500 ft) constraint. The result of this study shows that the

design range of a hydrogen vehicle can be greatly extended with only a

reasonable increase in gross weight (a 22.8 percent increase for a 2,222 km

(1,200 n.mi.) range increment.)

Figures 87 and 88 illustrate the effect of a change in empty weight as would

be the case if equipment or structural weight were to increase or decrease

from the original target weight. Two different situations are examined in

this study:

In Figure 87, the assumption is that the vehicle design has not been frozen

and the option exists to resize the vehicle to accomplish the original mis-

sion. This might be the case if, for example, the target wing weight were

exceeded by 10,000 lbs at the original design gross weight. This causes a

LOCKHEED
CALIFORNIA COMPANY



subsequent increase in fuel, propulsion, structure, etc. and finally a

further increase in the wing itself to maintain the vehicle performance.

The sensitivity or growth factor shown is about 2.65 pounds of gross weight

per pound of original empty weight change.

Figure 88 assumes that the design gross. weight has been frozen and that the

fuel available must be adjusted to reflect the change in empty weight. The

result is a change of about .04 n.mi. per pound of empty weight change.

Figure 89 shows the effect of a uniform change in engine specific fuel con-

sumption (SFC) on total range. The vehicle is not resized but flies at

different ranges as the fuel consumption is varied. This is a significant

sensitivity and allows an increase of 54 n.mi. with each 1 percent decrease

in SFC.

As in Phase I, the penalty in total range that results from having to fly

initial or final legs at subsonic speeds over populated areas, is shown in

Figure 90. The decay in total range amounts to only about .1 of a n.mi. per

n.mi. of subsonic leg. It is of interest that if the whole mission were

flown subsonically the range would only decay 40 n.mi. although it would be

a long, expensive trip. The inability to continue the mission at supersonic

speeds, e.g. loss of an engine, would mean that the original destination

could probably be held if the distance to the designated alternate is short

enough tD be within the total fuel capacity limit including legal reserves

at the alternate.

Figure 91 is simply the change in range as the payload:is off-loaded. The

increase is about .073 km/kg (.018 n.mi. per lb) of payload. Of interest

here is that as designed, the point design vehicle is fuel volume limited

and no additional fuel can be added as the payload is reduced as is the case

for most conventional hydrocarbon fueled aircraft. In the real world, the

advisability of carrying extra tankage to increase flexibility would be a

matter of route structure and economics. The method of construction of the

vehicle would allow enlargement of the tasks by a simple fuselage plug within

the limits of aircraft strength and the wing area selected.

175
LOCKHEED
CALIFORNIA COMPANY



+1- T/W

c 0

w 0.55

O -2
-J

S -3- 00.60

-5 -
1 -FAR 360

( -- 0.6
T/W

Mo (420) 190 DBT = 216GF AT T.O.

S(410) 2896 (850 FT F 0.50

(390) T-W

(45) (50) (55) (60)

L..ocKHEED 1

FONIA COM0.55

.1, 0.60
0.65

2 -2

0 (420) 190 DBT 2160°F AT T.O.

.10 - 20 230 2402896M (8500 FT) FAR
c I0 LDG FIELD LENGTH

(4 .10130) - 180- TRAINT

M-170 -- 0.65



2600 -

L 8000
, 2400

- .j 2200
DL 7000u_

,L 2000

0.50

0.49 -

0.48 -

c2 (58)

n- (56)
d N 270 -

o (54)
260

(52)
250

(460) - 210

SR-- 17.1 KG/KM (70 LB/NM)
S (440) - 200 - AR

0 (420) 190 -
y POINT DESIGN

(400) - 180 -

(380) - 170 O FAR LDG FLD LENGTH = 2896M (9500 FT)

]- 0 FAR 36
O  (360) - 160
a I I I I I I

(340) - 8000 8400. 8800 9200 9600 10,000

I I I I I I I

4200 (4400) (4600) (4800) (5000) (5200) (5400)

RANGE~KM (NM)

Figure 86. Gross Weight, W/S, T/W, and T.O. Field Length vs Range

177
LOCKHEEDc C0



LR 26323

(400)
180 1 AWTO .

, AWEMPTY

O (VEHICLE RESIZED)
(380)

170

(360) - RANGE= 7778 KM (4200 NM)

o 160 - W/S = 261.2 KG/M 2 (53.5 LB/FT 2 )
c . T/W = 0.50

150 I I I I I
-4 -2 0 +2 +4

I I I
(-10) 0 (+10)

INCREMENTAL EMPTY WEIGHT CHANGE - 103 KG (103 LBS)

Figure 87. Empty Weight Change vs. Gross Weight (Constant Range)

(4800) -
8800-

R 0.169 KM/KG
R (0.0414 NM/LB)

(4600) - 8400 WEMPTY

(AFTER DESIGN FREEZE)
-(4400)

z 8000

3 (4200) -

m 7600 -

z (4000) WEIGHT = 186,946 KG (368,054*LB)
7200 -WS : 261,.2KG/M 2 (53.5 LB/FT2 )

(3800) - T/W 0.50

6800
(3600) 

I I I 
I

:4 -2 0 +2 +4

I I I
(-10) 0 t+1o)

INCREMENTAL EMPTY WEIGHT CHANGE' 103 KG (103 LOS)

Figure 88. Emnpty Weight Change vs. Range (Constant Gross. Weight)

LOCKHEED 178
CALIFORNIA COMPANY



LR 26323

9200

(4800)- 8800
8800

AR
(4600) SFC 99.5 KM (54.3 NM) /PERCENT

8400

(4400)
8000

i (4200)-

S7600

(4000)

7200 - W/S = 261.2 KG/M 2 (53.5 LB/FT 2)

(3800) - T/W = 0.50

6800
-10% 0 +10%

CHANGE IN NOMINAL SFC -%

Figure 89. Specific Fuel Consumption vs. Range

(4300)- 8000

(4200) INITIAL LEG SUBSONIC

; (4100)- 7600

FINAL LEG SUBSONIC

(4000)-

GROSS WEIGHT = 166.946 KG (368,054 LB)

< (3900) - W/S = 261.2 KG/M 2 (53.5 LB/FT 2 )

T/W = 0.50

(3800) - ALL SUBSONIC RANGE = 7704 KM (4160 NM)

(3700) -(3700)- 6800
0 800 1600 2400 3200 4000

I I I I I
(0) (500) (1000) (1500) (2000)

SUBSONIC LEG ~ KM (NM)

Figure 90. Effect of Subsonic Cruise Leg on Total Range

LOCKHEED
CALIFRNIA COMPANI



.... 170

(360)
.8 160
(I-'

z (340)

?. 150

U- (320)

4 140

25
POINT DESIGN

(50) I AR
(0) R 0.0739 KM/KG (0.0181 NM/LB)
APL

20

S(40) DESIGN GROSS
WT = 166,946 KG (368,054 LB)

15 -
(30)-

10 -
(20 -

W/S = 261.2 KG/M 2 (53.5 LB/FT 2)

S(10)- 5 T/W = 0.50

(0) 0
8000 8400 8800 9200 9600

I I I I I I
(4200) (4400) (4600) (4800) (5000) (5200)

RANGE - KM (NM)

Figure 91. Payload vs. Range (Point Design)

LOCKHEED 180
CALIFORNIA COMP



If the engine noise constraint were to be tightened (made more restrictive),

the point design gross weight would increase about 3,000 lbs for each EPNdB

reduction. This is shown in Figure 92 which also indicates the increase in

thrust-to-weight required as the allowable jet velocity is reduced. The wing

loading is decreased to allow a higher climb-out flight path angle, thereby

increasing altitude at the critical flyover point 6.48 km (3.5 n.mi.) from

brake release. The increasing slope of the curve should also be noted as the

maximum noise reduction investigated (5 EPNdB) is approached.

Of equal importance to engine specific fuel consumption is the drag level.

Figure 93 shows a change of about 100 km (54 n.mi.) for each drag count.

The analysis assumed that the change in nominal drag was applied uniformly

to the zero-lift drag at all Mach numbers.

Figure 94 shows a gross weight increase of about 8.62 kg (19 lb) per .3048 m

(1 ft) reduction in FAR landing field distance. In each case the wing area

has been increased (lower W/S) in order to reduce the landing approach speed

as the field length is shortened.

In Figure 95, the effect of a reduction from the selected noise limited

take-off duct burning temperature of 2160oR is shown for the point design

airplane. As the power is reduced, the takeoff distance increases, maximum

sideline noise decreases and flyover noise increases. The increase of fly-

over noise is due to the lower flightpath angle with a subsequent reduction

in altitude at the 3.5 n.mi. measuring point. This figure is included to

illustrate the tradeoff between sideline and flyover noise as the power (jet

velocity) is changed.

In conclusion, the following observations can be made with regard to the

performance and sensitivity studies:

* The critical constraints on the vehicle are airport noise and

landing field distance requirements.

* The turbofan engine characteristics allows meeting the noise require-

ments with a reasonable thrust-to-weight ratio and flexibility in

off-mission performance (subsonic cruise).
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* Ranges up to 10,000 km (5,400 n.mi.) can be achieved at a

reasonable increase (23 percent) in the point design aircraft

gross weight.

* Compared to the hydrocarbon fueled AST the hydrogen vehicle

should be less sensitive (lower growth factors) to SFC, empty

weight, and drag changes because of its lower fuel function

(0.26 compared to 0.52 for the Jet A-i airplane).

4.2.3 Environmental Summary

4.2.3.1 Airport Noise Footprint

An airport noise footprint for the selected aircraft was determined by

computing noise levels for a complete gridwork consisting of 12 microphone

locations along the flight path and at 9 different sideline distances.

The resulting matrix of noise levels at each of these 108 points, shown on

Table 19, is interpolated to determine the locus of points of fixed noise

levels. A plot of these contour lines (footprint) is shown on Figure 96

for the selected point design aircraft. The takeoff gross weight for the

aircraft is 166,946 kg (368,054 lbs). At this weight, FAR Part 36 specifies

a sideline noise limit of 106.5 EPNdB at a distance of 648.6 m (2,128 ft)

from centerline of the runway and a flyover value of 104,5 EPNdB (6.48 km

(3.5 n.mi.) from brake release, Both of these constraint limits are greater

than the actual values computed for the selected aircraft. The peak noise

level of the specified sideline distance, 105.9 EPNdB, occurs at 2,533 m

(8,310 ft) from brake release and contains 5,333 km2 (1,318 acres) within

this noise level contour. At the flyover measurement point 6.48 km

(3.5 n.mi.) from brake release, a noise level of 104.3 EPNdB is calculated.

The area within this contour line is 6,879 km2 (1,700 acres). A plot of

area contained within constant noise level contour lines versus effective

perceived noise levels for the selected aircraft is shown on Figure 97.

4.2.3.2 onic Boom Signatures

The sonic boom overpressure signatures for selected points along a typical

mission flight path ground track are presented in Figures 98 through 101.
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TABLE 19. SIDELINE NOISE LEVEL MATRIX FOR PLOTTING FOOTPRINT CONTOURS

Sideline Distance
m (feet) Distance from Brake Release - m (feet)

30.5 1,219.0 2,438.0 3,048.0 3,658.0 4,420.0

(100.0) (4,000.0) (8,000.0) (10,000.0) (12,000.0) (14,500.0)

0o0 (0.0) 95.9 122.9 118.6 117.7 114.1 110.5

76.2 (250.0) 121.8 121.0 120.2 117.1 113.8. 110.3

152.4 (500.0) 116.4 115.7 117.0 115.3 112.9 109.9

304.8 (1,000.0) 108.4 108.7 112.3 111.7 110.5 108.5

457.2 (1,500.0) 101.2 103.1 109.1 108.7 108.1 106.8

648.6 (2,128.0) 93.8 97.9 105.8 105.8 105.4 104.6

914.4 (3,000.0) 87.8 93.1 101.8 102.0 101.9 101.5

1,219.0 (4,000.0) 83.4 89.9 97.6 97.9 97.9 97.5

2,438.0 (8,000.0) 73.4 79.8 85.2 85.9 86.1 86.2

5,182.0 5,944.0 6,486.0 7,315.0 8,534.0 9,754.0
(17,000.0) (19,500.0) (21,280.0) (24,000.0) (28,000.0) (32,000.0)

0.0 (0.0) 107.7 105.5 104.2 102.5 100.3 98.8

76.2 (250.0) 107.6 105.5 104.2 102.5 100.3 98.8

152.4 (500.0) 107.4 105.3 104.1 102.4 100.2 98.7

304.8 (1,000.0) 106.4 104.7 103.6 102.0 99.9 98.5

457.2 (1,500.0) 105.2 103.8 102.8 101.3 99.5 98.2

648.6 (2,128.0) 103.5 102.4 101.6 100.2 99.0 98.1

914.4 (3,000.0) 100.8 99.9 99.3 98.9 97.9 97.4

1,219.0 (4,000.0) 97.9 98.1 97.8 97.6 96.2 93.6

2,436.0 (8,000.0) 86.1 85.9 85.8 85.7 85.5 85.2

NOTE: VaLues in Table are noise levels in EPNdB

NASA/Langley program SONIC was used for this analysis. The flight conditions

for the LH 2 point design configuration are summarized in Table 20 - no winds

nor maneuvers were considered.

The overpressure and lift parameters calculated for these cases are also

presented in Table 20. It should be noted that these parameters.are basically

far field terminology "left over" from the early days of sonic boom analyses.

However, they are still quite useful for conducting tradeoff studies of

closely-related configurations such as the present study, even though the

calculated signatures clearly demonstrate near field effects.
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TABLE 20. SONIC BOOM TABLE

AP
-newton

Altitude Weight 2
-meter - kg Flight Overpressure Lift

Mach No. (ft) (ibs) Condition Parameter Parameter (ib/ft2

12,802 161,79 99.59
1.4 12,802 161,479 Climb . .0468 .0031 (0

(42,000) (356,000) (2.08)

15,850 159,211 42 82.83
(52,000) (351,000). (1.73)

20,117 155,912 Start 0588 0064 63.20
(66,000) (343,728) Cruise " (1.32)

21,031 130,343 End .0589 0062 56.98
(69,000) (287,358) Cruise (1.19)

The maximum overpressure calculated was 99.59 newtons/m 2 (2.08 psf). It

occurred during the climb to cruise altitude at M = 1.4 and 12,802 meters

(42,000 ft). During cruise, a maximum overpressure of 63.2 newton/m2

(1.32 psf) was found to occur at start of cruise when the aircraft was

heavy and at the lowest cruise altitude. At the end of cruise, sonic boom

overpressure was reduced to 56.98 newtons/m
2 (1.19 psf).

4.2.3.3 Emissions

Table 21 compares the combustion of hydrogen with Jet A-1, a kerosene type

hydrocarbon, in terms of exhaust products, and qualitatively forecasts the

probability of being able to comply with standards anticipated for 1990.

As can be seen, the hydrogen fuel, which has no carbon atoms, eliminates

unburned hydrocarbons, carbon dioxide, carbon monoxide, and particulate

carbon (smoke) from the engine exhaust. This allows the burner design

efforts to be directed at reducing the NOx emissions. Due to the differences

in fuel boiling point the extremely high temperature combustor pilot zone

which is needed in JP burners to provide good low-power efficiency for

reduced carbon monoxide and unburned hydrocarbons, is not required for a

hydrogen burner. Even though hydrogen burns stoichiometrically approximately

3110K (1000F) higher than Jet A-I, the improved reaction rates, mixing
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TABLE 21. EMISSIONS - JET A-i vs LH 2 FUEL

1990 CRITERIA

Compliance With
Anticipated Standards

Emission Product LH 2  Jet A-i

CO 0 Difficult

CO2  0 Difficult

Unburned Hydrocarbons 0 Difficult

NOx Acceptable Difficult

Smoke 0 Difficult

H20 Acceptable Acceptable

characteristics, and the gaseous phase of hydrogen will permit burner designs

to be tailored to reducing the time spent at peak temperature which is where

NOx is produced.

By properly designing a burner for hydrogen combustion, lower NOx emissions in

parts per million of engine exhaust will be attainable as compared to a JP

engine. The vehicle analysis results show that the engine thrust requirement

is reduced by almost one-half for a hydrogen fueled aircraft because of the

TOGW reduction achieved with the reduced fuel weight. This thrust reduction

further decreases the total NOx emissions per flight.

Water vapor is the principal product of combustion of hydrogen. It is

expected a hydrogen fueled AST will produce not quite twice the quantity of

H20 emitted by a conventionally fueled (Jet A-i) supersonic transport.

During cruise the subject point design airplane uses 3.19 kg (7.03 ibs) of

LH 2 per second. Assuming 100 percent combustion efficiency, this generates

28.5 kg (62.8 ibs) of H20 per second. By contrast, an equivalent design of

Jet A-i fueled AST will use 11.6 kg (25.6 ibs) of fuel per second and, again

assuming 100 percent combustion efficiency, will generate 15.1 kg (33.2 ibs)

of H 2 0 per second.
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4.3 VEHICLE COST

4.3.1 Summary of Vehicle Cost

The cost estimates provided for the liquid hydrogen AST include Development,

Production and Operations. The summary of the development and production

costs are presented in Table 22. The operations costs are presented, along

with the system parameters in Tables 23 and 24. More detailed presentation

of the development, production, and DOC/IOC/ROI are included in the computer

printout for the point design in Appendix B. The development cost in

Table 22 includes the production cost of the 4 vehicles used in the flight

TABLE 22. INVESTMENT COST SUMMARY ($ - MILLIONS)

Development

Airframe $2661.51

Engine $ 658.98

.Total $3320.49

Production Quantity 300 Aircraft 600 Aircraft

Production

Airframe $29.93 $25.15

Engines 8.55 7.69

Avionics .50 .50

Profit 4.49 3.77

Insurance and Taxes 2.99 2.52

Warranty 1.50 1.26

Total $47.96 $40.89

Other Investment

Spares 7.20 6.23

Special Support Equipment 2.40 2.05

Production Tooling 1.41 .60

Technical Data .29 .25

Total $11.30 $ 9.13

Grand Total Production $59.26 $50.02
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TABLE 23. SYSTEM COST SUMMARY (4200 n.mi. STAGE LENGTH)

300 Aircraft 600 Aircraft

Passenger Capacity 234 234

Fleet Size 14+ 14+

Utilization (block hours) 3600 3600

Stage Length Kilometers (n.mi.) 7778 (4200) 7778 (4200)

Revenue Passenger Miles (B) 7.24 7.24

Load Factor .55 .55

DOC Cents/seat kilometer (cents/S n.mi.) 1.14 (2.06) 1.01 (1.87)

IOC Cents/seat kilometer (cents/S n.mi.) .50 (.92) .50 (.92)

ROI (percent) (after taxes) 6.04 10.93

Fare ($/trip) 249 249

test program. Normally only one vehicle will remain in the development

category after completion of the development test program and the other

vehicles are converted to production status and sold. With one vehicle

remaining in R&D status and the remaining three sold at the average cost of

the production buy would mean a recoupment in the development program of

$143.9 million for the 300 aircraft production lot and $122.7 million for

the 600 production buy.

The cost for the LH2 AST as used in.the calculation of the DOC includes

the total production cost, the production tooling, technical data, and

the pro rate share of the total development cost. The airframe and engine

cost breakdown with the inclusion of the items noted above is:

Airframe $49,983,000 (including avionics)

Engine $10,744,000

Total Cost $60,727,000

The costs and fare presented in Table 23 are calculated on the basis of a

route stage length that is equal to the design range of the airplane. In

actual operation the average stage length flown by an aircraft is consider-

able less than the design range and the productivity is reduced.
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TABLE 24. SYSTEM COST SUMMARY (2200 n.mi. STAGE LENGTH)

Passenger Capacity 234

Fleet Size 9.+

Utilization (block hours) 3600

Stage Length Kilometers (n.mi.) 4074 ('2200)

Revenue Passenger Miles (billions) 3.98

Load Factor .55

DOC Cents/seat kilometer (cents/seat n.mi.) 1.38 (2.55)

IOC Cents/seat kilometer (cents/seat n.mi.) .67 (1.24)

ROI (percent) (after taxes) -3.16

Fare ($/trip) 135

The ROI's shown in Table 23 are used primarily for comparative evaluation and

selection of the point design aircraft rather than ecomonic indicators that

would be obtained from a total route simulation analysis. The ROI's shown

in Table 23 are based on a route segment that is equal to the design range

of the aircraft. The ROI for an off design range is determined also. The

route chosen is the Los Angeles to Honolulu run. The passenger demand for

this route if taken from the Phase II Market Analysis Study (Contract

NAS1-l1940). The system summary information for this route is provided in

Table 24. The ROI as shown in Tables 23 and 24 are calculated by the gross

method as used by the ASSET program, and described in paragraph 3.1.6.4.

The ROI is also calculated by the model as described in Appendix A. The

more detailed ROI model produces a ROI of 5.48 percent for the 7783 kilometer

(4,200 n.mi.) stage length as compared to 6.04 percent for the ASSET calcula-

tion. The ROI for the 4,074 kilometer (2,200 n.mi.) stage length by the

detailed method is -3.58 percent as compared to -3.16 percent by the ASSET

program. The detailed output information for the economic ROI calculations

are provided in Appendix B along with the other computer printouts for the

Point Design Vehicle.
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4.3.2 System Cost Sensitivities

The sensitivity analysis is designed to consider parametric variation of

three scenario/operational parameters (stage length, utilization, and load

factor) and three cost parameters (fare, fuel cost and aircraft quantity).

Summary plots of the results are shown in Figure 102 through 108.

Utilization - The utilization is varied from the base point of 3,600 block

hours to a low of 3,000 hours and a high of 4,000 hours. In all cases the

passenger demand remains constant. The resultant sensitivity of DOC and ROI

to utilization is shown inFigure 102. The change in DOC is not dramatic

but the cascading effect on ROI is significant.

Load Factor - The load factor variation has no effect on DOC but does alter

the IOC and the number of vehicles in the fleet. The change in the IOC is

caused by the change in the number of passengers handled at each flight and

the number of vehicles required is changed because the productivity of the

airplane is changed while the total passenger demand remains constant. The

change in ROI with a change in load factor ranging from .50 to .60 is shown

in Figure 103.

Stage Length - Operating the AST at the off design ranges has a significant

affect on the ROI (Figure 104). When the aircraft is flown a shorter stage

lengths, the block speed is reduced but the flight frequencies are increased.

This causes an increase in DOC and IOC. These increases override the de-

crease in investment due to the smaller number of vehicles required to

accommodate the fixed passenger demand. The 4,200 n.mi. AST flying the

Los Angeles to Honolulu route has a negative ROI when evaluated in terms of

the assumptions used in this study. The ROI.is extremely sensitive to fare

level and a slight increase in fare would change the ROI from negative to

positive for the LAX-HNL route, as shown in the fare sensitivity analysis

that follows.

Fare Level - The effect of fare level on ROI is calculated for the basic

design range of 7,778 kilometers (4200 n.mi.) and the off design range

operation at 4,074 kilometers (2,200 nzmi.) (Figure 105). If the fare level

is calculated in the same manner for both stage lengths ($9 + $.03083/passenger
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kilometer) the ROI for the 7,778 kilometer stage length is 6 percent and

-3 percent for the 4,074 kilometer stage length. To have equal ROI's

(6 percent) the fare level at the .,074 kilometer stage length would have

to be $166 per trip. This fare is 27 percent above the current peak coach

fare and 13 percent less than the first class fare from Los Angeles to

Honolulu.

Fuel Cost - The DOC and ROI, as noted by Figure 106, are very sensitive to

fuel cost. This is due to the fact that for the AST the fuel is a large

percentage (41 percent) of the total DOC. A 50 percent increase in the fuel

cost causes a drop in ROI from 6 percent to zero.

Production Quantity - The result of the sensitivity of production quantity

on DOC and ROI is shown in Figure 107 and 108. Figure 107 shows the

relationship between the production quantity and the production cost of the

vehicle. The results are dependent upon the slopes of the learning curves

chosen for the labor, material, engine and avionics. The values for the

learning curve slopes are given in the input table included in Appendix A.

The DOC and ROI are sensitive to the cost of the vehicle as the vehicle cost

contributes approximately 32 percent to the DOC in terms of insurance and

depreciation.

4.4 STRUCTURES

The point design LH2 AST aircraft has been described in preceding sections.

The size, weight, and performance which have been shown were based on struc-

tural designs established both by comparison with previous, similar aircraft

designs, e.g., the Jet A-i AST from references 1 and 4, and also as a result

of specific analyses performed during the subject study. The highlights of

the structural considerations related specifically to the hydrogen fueled

airplane are outlined herein.

4.4.1 Design Load Conditions

Design conditions were analyzed to establish fuselage loads requirements for

design of forebody and aftbody structure in the area of the LH2 tanks. Con-

ditions to be investigated were selected following review of loads analysis

for the current Arrow Wing Structural Concept Study.
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Inertia data for fuselage and contents are shown on Figure 109. Conditions

were analyzed at both light and heavy weights and produce the net shears and

bending moments summarized in Table 25. Forebody loads are based on inertia

loadings with possible aerodynamic loads relief conservatively omitted. The

effect of balancing horizontal tail loads is included in afterbody loads.

An arbitrary yaw condition at high speed is included for aftbody design to

account for combined bending and torsion in this area.

The maximum fuselage bending moments and shears are plotted on Figures 110

and 111. Most of the fuselage is designed by the 2.5 g positive maneuver,

however the aft portion of the aft fuselage/tank is designed by negative

maneuver.

TABLE 25. FUSELAGE LOADS - LH2 AST

Forebody Aftbody

Positive Negative Positive Negative Arbitraryl

Condition Maneuver Maneuver . Condition Maneuver Maneuver Yaw

(keas) 200.6 167.2 (keas) 200.6 200.6 270
VE m/sec (390) (325) E m/sec (390) (390) (525)

n 2.5 -.15 n 2.5 -1.0 1.0z z

F.S.1000 F.S.2640
10-3 S -81.25 2.59 10 3S -217.45 123.0 6.46

z z
10-6M -19.83 .83 10-6M 124.47 -95.32 -26.15

y y

F.S.1200 F.S.2900

10 -3S -123.75 3.34 I0- S -155.95 98.38 12.96

-6 -
10-6 M -40.33 1.47 10-6M 93.82 -83.07 -33.41Y Y

F.S.1530 F.S.3300

10-3 Sz  -190.5 4.68 10-3Sz -90.7 72.28 22.66

10-6M -92.72 2.81 106M 55.03 -67.55 -41.38Y Y

6
1. Add M = ±3.405 x 10 in-lbs.y
2. All loads are limit.

3. + Bending moments (My) are nose-up.

4. Shear in lbs; moments in in-lbs.
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Tank Pressures

Maximum absolute tank internal pressure is 158,579 newton/m2 (23 psi).

Sea Level p = 158,579 - 101,353 = 57,226 newton/m2

(23.0 - 14.7 = 8.3 psig)

At 22,860 m p = 158,579 - 3,447 = 155,132 newton/m 2

(75,000 ft) (23.0 - .5 =  22.5 psig)

Pressure loads are multiplied by a factor of 2 for ultimate design. Fuselage

shear and bending loads are multiplied by a factor of 1.5 for ultimate design.

4.4.2 Structural Analysis

The primary structure of the CLl701 airplane represents the application of

the advanced technologies presumed to be available for near-term (1980-1981)

start-of-design as identified in Reference 4.

The evaluation of various structural approaches was made based on the results

of 1) the detail structural analysis of a spectrum of structural concepts and

arrangements considering advanced materials and producibility methods,

2) the preliminary design drawing prepared for each structural arrangement

showing the minimum weight structural concept, 3) the weight estimates of

the wing and fuselage structure, and 4) the production and development costs

determined for the candidate structural arrangements. Cost benefit trades

were performed considering structural efficiency, initial costs, direct

operating costs, and applied technology level. The trade studies identified

the least weight and least cost homogeneous structural approach as the

following:

* Chordwise stiffened wing structural arrangement

* Convex-beaded surface panels (Ti 6Al-4V annealed; weld bonded)

* Composite reinforced spar caps (Titanium alloy reinforced with

Boron/Polymide; bonded)

The parametric sizing and costing evaluation process performed with the

computational aid of the Lockheed ASSET computer program, however, identified

the importance of minimizing structural weight. Thus, the structural
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approach selected for the CLI701 airplane includes the minimum weight

honeycomb core wing tip structure.

4.4.2.1 Wing Structure

The structural approach for the wing of the CLI701 airplane is shown in

Figure 112 and identified by the three major areas which include the forward

box, aft box and tip structure. The design concept is identical to that

being developed in the ongoing Arrow-Wing Structures Study (Reference 4).

The detail design fdr the LH2 AST airplane is modified from that of its

Jet A-i fueled counterpart to account for the following differences:

* Smaller wing area

* Lower wing loading

' No fuel containment

This latter point has both advantages and disadvantages: there is no need to

modify an otherwise ideal load path to provide for tankage requirements; on

the other hand, there is no load relief to apply at the design condition

involving a 2.5g maneuver.

Forward and Aft Box Structure

The chordwise stiffened arrangement finds application to the forward and

aft box structure which comprises the major portion of the basic wing. This

arrangement is essentially a multispar structure with widely spaced ribs.

The submerged spar caps of titanium alloy (Ti 6A1-4V annealed) are spaced

approximately 20 inches on-center and are used to transmit the wing bending

loads. These caps being submerged result in reduced temperatures,which in

turn results in increased allowable stresses (fatigue) and also permits

uncoupling of the spanwise and chordwise stiffness for vehicle flutter

suppression.

Selective reinforcement of the basic metal structure is considered as the

appropriate level of composite application for the near-term design. Com-

posite reinforced spar cap details (Figure 1121) show the application of

unidirectional reinforcing with boron polyimide. Both truss-type and

circular-arc corrugated webs are used as appropriate for access and manu-

facturing requirements.
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The surface panel concepts for the forward and aft box in this arrangement

have stiffening elements oriented in the chordwise direction. Structurally

efficient circular-arc beaded-skin designs are used (Figure 112). These

efficient circular-arc sections of sheet metal construction (Ti 6A1-4V

annealed) provide effective designs when properly oriented in the airstream

to provide acceptable aerodynamic performance as demonstrated on the

NASA-Lockheed YF-12 airplane. The panel elements are weldbonded for improved

fatigue life. The shallow protrusions provide smooth displacements under

thermally induced strains and operational loads.

Tip Structure

The stiffness-critical wing tip structure utilized the monocoque construction

(Figure 112) with biaxially stiffened panels which support the principal

load in both the span and chord direction. The substructure is essentially

a multispar design with full and partial ribs to provide support for the

leading and trailing edge control surfaces and actuating system.

The monocoque construction has smooth-skinned aluminum brazed honeycomb

sandwich panel (Figure 112) that result in minimum aerodynamic drag. Thermal

stresses are absorbed with minimal relief but criticality, defined by flutter

suppression requirement, produces a minimum weight structural design for the

tip structure.

4.4.2.2 Fuselage Structure

The wea-;her vision nose, payload and empennage sections of the CL1701 air-

plane are a conventional semimonocoque shell construction of titanium alloy

material (Ti 6Al-4V annealed) with extensive use of weldbonding. The flight

station enclosure tapers down from the constant cross-section of the forward

tank and payload section which is formed by the intersection of two cylinders

with a radius of 1.966 meters (77.4 inches). Structural continuity between

the integral tank sections and the nose, payload, and empennage sections is

provided by a truss arrangement, see Figure 113. Suitable longitudinal local

reinforcements are used in truss member attachment areas to distribute the

concentrated loads encountered. An analysis of a critical truss member is

included in Appendix C.
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The nose, payload and empennage structural arrangement is a uniaxial stiffened

structure of skin and stringer with supporting frames. Weld bonding is

utilized as shown in Figure 113 to improve the fatigue life of the structure.

The skin and closed-hat stringers are supported by sheet metal frames that

are spaced at approximately 0.508 meters (20-inch) intervals and aligned

with the spars of the wing structure. Typical construction details of the

frame and stringers are presented in Figure 113. A floor is provided at

the intersection of the cylinders as well as above the wing box structure.

Fore and aft intercostals are provided over the wing box to support the

lower cabin floor. Transverse beams which are attached to each frame are

provided to support the upper cabin floor. The pressure boundary is pro-

vided by the upper surface of the wing box and pressure bulkhead at each

end. The main frames that distribute concentrated wing and gear loads into

the fuselage structure are built-up from titamium forgings or extrusions.

The fuselage aft of the hydrogen tankage contains structural provisions for

mounting the fin and horizontal stabilizer. A skin-stringer-frame con-

struction similar to that provided in the pressurized area of the fuselage

is used. The main rings that distribute the fin loads into the fuselage

are titanium forgings.

4.4.2.3 Empennage Structure

The empennage structure utilizes monocoque construction with a multispar

substructure. The empennage structural concepts and arrangements are dic-

tated by the high sonic environment to which it is subjected, as well as

engine exhaust temperatures.

4.4.2.4 Fuel Tanks

In the course of the fuel tank investigations,.three types of tanks were

studied. The simplest of these is a thin skin aluminum non-integral tank

.supported at two fuselage stations. The second concept employs integrally

stiffened aluminum skin which forms the fuselage structure as well as the

tank wall. This is the integral tank concept. The third design utilized

composite materials to also form an integral tank but the technology 
level

required to fabricate such a tank, together with the internal cryogenic
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insulation planned for the concept, is considered to be in the late nineteen

eighties. For this reason most of the investigative effort was expended on

the first two concepts.

As the investigation progressed it became apparent that the integral welded

tank concept was superior to the non-integral. The integral tank has a

higher volumetric efficiency, resulting in a weight saving. It has a greater

structural efficiency resulting in futther weight savings. In addition, the

tank/fuselage structure as well as the insulation is more readily accessible

for inspection purposes. The non-integral tank design would have to incor-

porate fuselage joints so that the tanks could be removed from the aircraft

for periodic inspection of the fuselage structure and insulation. For these

reasons the integral tank design is chosen for the subject design study.

From a cost standpoint, it is possible that some alternate design is pre-

ferable to the integrally stiffened shell design for the integral tanks.

A brazed aluminum honeycomb sandwich structure is a possibility, as is a

'weldbonded skin stringer construction. This latter design requires an

adhesive which is good for long time spans at cryogenic temperatures but

it could result in a much less costly method of fabrication.

Non-Integral Tanks

The non-integral tanks are of a welded construction and are fabricated

from 2219 alluminum alloy. The basic tank shell is of a monocoque design

except for a few rings for baffles, tank shape maintenance, and tank

support. The shell skin is chem milled to a thickness of .00127 m (0.050

inches) except for the sheet edges where it is .00203 m (0.080 inchesY

thick to account for the decreased material properties due to welding. The

thin shell is supported against shear and compression buckling by the

cryogenic insulation which is cemented to the external surface of the tank.

In a monocoque structure such as this, shear and/or compressive buckling

would result in tank failure.

The non-integral tanks are supported at two stations only so as to avoid

loading of the tank by fuselage deflections. In addition, the aft support

of the aft tank has a track and roller support arrangement to prevent
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fuselage twist from torquing the tank. The four tank support points (two at

each support station) consist of stainless steel pins which are recessed in

the tank and surrounded by evacuated fittings to minimize the heat leak path.

The tank crossectional shape requires the same crosstie which is outlined

in the integral tank description which follows. The design of this member is

essentially the same for both tank concepts. The same holds true for the

design of the baffle bulkheads for the two tank concepts.

Table 26 presents a breakdown of weights of structural components of a

design of non-integral tanks for the LH2 AST, plus a calculation of the fuel

weight fraction (weight of tank structure divided by the weight of hydrogen

it is to contain). Stress calculations are shown in Appendix C.

Integral Tanks

The integral tanks are of a welded construction and are fabricated from

2219 aluminum alloy (See Figure 113). The surfaces consist of integrally

TABLE 26. WEIGHT BREAKDOWN: NON-INTEGRAL TANKS

INCLUDES BOTH TANKS)

Skin Ws = 2,087 kg (4,600 lb.)

Tank Ends W = 535 kg (1,180 lb.)

Support Structure Wf = 544 kg (1,200 lb.)

Baffle Bulkheads W b = 367 kg (810 lb.)

,rosstie x = 408 kg (900 lb.)

Crack Stopper Straps W = 109 kg (240 lb.)

Total 4051 kg (8,930 lb.)

Add 10% for non-optimum and contingency factor:

4,051 kg (8,930) x 1.10 = 4,459 kg (9,830) lb.

Fuel Wt. Fraction

4,459 (9,830) = 0.113
39,644 (87,400)
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stiffened skin with the stiffeners on the inside of the tank and with the

outside surface of the tank smooth. This outside surface is .117 m (4.6 in)

below contour, and the space between is occupied by insulation. The thermal

protection system consists of two different types of insulations (see

Section 4.5 for details). Generally, the cryogenic insulation is a closed

cell foam type material which is bonded to the smooth tank surface. The

high temperature insulation is a fiberglas mat faced with a thin layer of

polyimide resin. Heat shield panels of sandwich construction made up of

fiberglas filler faced with graphite polyimide comprise the aircraft external

surface. The heat shield panels are supported by low conductance fiberglas

standoffs which are fastened to the tank surface.

The integrally stiffened tank skin carries fuselage bending and shear loads

as well as tank internal pressure loads. As in the case of the non-

integrated tanks, the cryogenic insulation performs the function of stabiliz-

ing the tank skin against shear and compression buckling. The skin-stringers

are machined from a basic extruded shape, and the stringers are tapered to

provide sufficient material to resist fuselage bending moments at any given

station. The 2219 alloy chosen for the tank structure is tough, weldable,

and is highly resistant to stress corrosion cracking. It is an excellent

cryogenic material, since it retains good ductility and has much improved

strength at liquid hydrogen temperature. Weld joints in the tank are appro-

priately beefed up to account for the reduced material properties through

the weld area and to provide for fatigue strength. An ultimate tension

stress limit of 27.58 X 106 n/m2 (40,000 psi) is imposed on the tank structure

for fatigue considerations. This stress level is also the approximate

column/crippling allowable stress for the compression surfaces.

The surfaces are stabilized by "floating.' rings on the inside of the tank.

These rings are spaced at 0.508 m (20ih.) and are fastened to the cross tee

flange of each of the integral stringers. They are formed channel shaped

and are fabricated from 2219-T87 aluminum alloy sheet. The ring cross-

sectional geometry varies along the length of the tanks- being a function

of the surface load per inch. In addition-to the shell stabilizing rings,

there are baffle bulkheads every 5.08 m (200 in.) of the tank length.

These are provided to dampen fuel slosh and to resist fuel pressure
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generated by a forward acting crash load factor. These bulkheads consist

of a thin aluminum membrane supported by a peripheral ring which also acts

as a surface stabilizing ring for flight loads.

Since the fuselage (tank) cross section consists of two intersecting circles

arranged vertically, there is an unbalanced pressure load at the cusps formed

by the intersection points. This load will be self-reacting if a load path

is provided to the cusp on the opposite side of the fuselage. This contin-

uous crosstie can perform two functions; in addition to providing the afore-

mentioned load path, it can act as a walkway for internal ground inspection/

maintenance of the tank. Accordingly, the crosstie is designed as a contin-

uous honeycomb sandwich panel which support loads in the vertical direction

as well as transmitting lateral tension loads. Holes are provided in the

panel to allow LH2 flow from the top half of the tank to the bottom half.

Table 27 presents a weight breakdown of structure components for the integral

tanks of the LH2 AST, plus a calculation of its fuel weight fraction. Stress

calculations are shown in Appendix C.

The transition from the integral tank structure to the conventional fuselage

structure is made through tubular truss members which are positioned around

the periphery of the transition area. The truss members are made from

fiberglas reinforced with boron filaments so as to afford maximum rigidity

and a minimum heat leak rate. See analysis in Appendix C.

Integral Composite Tanks

If materials technology advances to the point where tanks can be fabricated

from composites, it is clear that significant weight reductions can be

realized. This would require development of composites which are impervious

to and unaffected by liquid and gaseous hydrogen. In addition, methods of

making gas and liquid tight joints in the composites would have to be

perfected.

At the present time the most promising candidate for a composite tank

structure is boron-aluminum, refer to Table 8 and Section 3.1.4. This

material has the advantage of having an impervious aluminum surface which
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TABLE 27. WEIGHT BREAKDOWN: INTEGRAL TANKS
INCLUDES BOTH TANKS)

Shell Ws = 3,946 kg (8,700 lb.)

Tank Ends We = 612 kg (1,350 lb.)

Rings W = 894 kg (1,970 lb.)
r

Baffle Bulkheads W = 367 kg (810 lb.)

Crosstie Wx = 408 kg (900 lb.)

Transition Trusses Wt = 1,134 kg (2,500 lb.)

Crack Stopper Straps W = 109 kg (240 lb.)

Total 7,7471 kg (16,470 lb.)

Add 10% non-optimum and contingency factor: 7,471 (16,470)
x 1.10 = 8,224 kg (18,130 lb.)

Fuel Wt. Fraction

8,224 (18,130)
41,989 (92,570) 0.196

NOTE: Fuel Weight is greater because of higher volumetric
efficiency with integral tank.

satisfies at least one of the requirements. A great deal of work would

have to be done to develop methods of fabrication and joining of large

structural components. This concept is considered to be beyond the

capabilities forecast for the 1981 design freeze date.
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4.5 INSULATION EVALUATION

4.5.1 Approach

The fundamental key to the development of a hydrogen-fueled supersonic

transport aircraft is a thermal protection system that has the desired mechan-

ical and thermodynamic properties to enable it to operate in a commercial

environment for the required life span with a minimum of maintenance,

A commercially acceptable thermal protection system would use insulation

materials that are:

* Impervious to air so as not to require purging to prevent

cryopumping.

* Not reliant on the maintenance of a high vacuum.

* Not susceptible to ageing or cracking under repeated thermal

stresses.

* Able to withstand the exterior temperatures associated with

supersonic flight.

* Capable of being repaired or replaced readily.

Existing materials are not known to have met these requirements, However,

this analysis has been based on known properties of existing materials to:

(1) provide data for the present conceptual analysis of the capabilities of

an LH2 AST: (2) reveal the areas offering maximum potential for improvement

through research and development; and (3) provide a basis for judging the

magnitude of future improvements which might be made as a result of properly

directed development.

Consequently, the weights and thickness of components of the thermal protec-

tion system reported in this section should be regarded as conservative esti-

mates of the corresponding values which might result from use of insulants

that could be available by 1981 which will meet these requirements.

4.5.2 Design Configuration

Evaluation of insulation performance was restricted to external insulation

concepts. External insulation systems have demonstrated reasonable success

in current aerospace applications and appear to have greater potential for
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satisfying airline operational requirements within the 1981 time constraint.

The use of systems requiring purge gas or CO2 frost were not considered

realistic in an air transport environment.

The properties of the materials used to represent the three elements of the

thermal protection system in the analysis are listed in Table 28. These

include the cryogenic insulation, a high temperature insulation, and a heat

shield -- the latter used only in the integral tank concept.

Integral and non-integral fuselage tankage configurations with two-layer

external insulation systems were investigated. The two-layer concept consists

of an outer layer of high temperature insulation, assumed for purposes men-

tioned to be fibrous quartz, applied over a cryogenic insulation, represented

by polyurethane foam. The high temperature insulation is required to limit

the foam temperature to the maximum of 422
0 K (3000 F) assumed for the study.

The basic tankage design and flight profile requirements are as described in

Sections 4.1.2 and 4.2.1, respectively. Briefly, the design mission con-

sists of Mach 2.7 cruise at an altitude of approximately 21,000 m (68,000 ft)

with a design range of 7800 km (4200 n.mi.). All fuel is contained in fuse-

lage forward and aft tanks. Because of equivalent boundary conditions, only

the forward tank was analyzed.

The tank design is of the "double lobe" configuration shown in Figure 113.

The tank length was increased for the non-integral configuration to obtain

the same tank volume as.the integral configuration for comparative analysis,

Each tank was originally sized to carry 20,200 kg (44,500 lb) of fuel for the

7800 km (4200 n.mi.) basic mission plus a 480 km (260 n.mi.) reserve mission.

During simulation of the mission, however, 680 to 1360 kg (1500 to 3000 Ib)

of fuel becomes unusable due to boiloff. Within the scope of the present

work, the required tank volume was not solved iteratively, and so the data

presented are for a system which completes the basic mission, but carries a

reduced reserve quantity, Tank nominal working pressure was not optimized,.

but held constant at 138,000 newton/m
2 (20 psia).
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TABLE 28. INSULATION THERMODYNAMIC PROPERTIES

p = 2 lb/ft 3  P = 4.5 lb/ft 3

Polyurethane Fibrous Graphite/Kevlar/
Foam Quartz Polyimide

(Low-Temp) (Hi-Temp) Heat Shield
Avg k Cp k Cp k Cp
Temp BTU BTU BTU BTU BTU BTU

(OF) hr ft OF lb OF hr ft OF lb OF hr ft OF lb OF

-460 0 0.287 0 0.143 0.0936

-400 0.002 0.01

-300 0.008 0.017

-200 0.0114 0.30 0.023 0.20

-100 0.0132 0.028 0.0248

0 0.0142 0.033 0.25

200 0.0154 0.32 0.04 0.225 0.0536

400 0.0163 0.045 0.0835

700 0.018 0,051 0.145 0.488

1200 -0.02 -0.07

4.5.3 Thermal Environment

Ambient Temperatures - Standard day design ambient temperatures were used in

all mission calculations. It was assumed that on a hot day the vehicle cruise

Mach number would be reduced to maintain the same total temperature.

Skin Temreratures - Previous analysis of AST skin temperatures has indicated

a maximum variation of ±10 degrees F along the aircraft fuselage in the area of

the LH2 tanks. The longitudinal variation of skin temperature is, therefore,

assumed negligible. Actual skin temperatures were calculated in two stages.

The first was to generate external heat transfer coefficients and recovery

temperatures for the LH2 tank regions using a standard utility computer pro-

gram. The second stage consisted of using an insulation optimization computer

program to combine the coefficients and recovery temperatures with calculated

internal and external radiation and convective heat fluxes to obtain radia-

tion equilibrium skin temperatures,
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4.5.4 Analysis Method

The initial insulation optimization consisted of determining the minimum

combined insulation system weight plus boiloff weight while maintaining

acceptable materials temperatures. Boiloff quantity is produced by dry tank

wall heat flux, wetted tank wall heat flux, ullage gas to liquid heat flux,

and internal heat loads. These quantities, in turn, are dependent on fuel

depth and ambient conditions which are functions of mission profile, The

thermal analyzer transient temperature program was modified to provide simu-

lation of these interrelated factors.

Computer program input consists of converting the physical system into an

analogous electrical resistance - capacitance network (thermal model).

Boundary conditions and temperature - dependent materials data are input in

tabular form. The program uses a finite time interval approach to solve for

temperature distributions and time histories. During each computing interval,

the tank simulation routines are executed to obtain required ullage space and

liquid volume heat transfer and boiloff conditions. These calculations and

conditions are summarized as follows:

Ullage Space

e. Heat flux - Radiation to LH2
- Free convection to LH2
- Free convection to Dry Wall

* Boiloff flow into ullage space from LH2

* Pressure work due to fuel flow

* Final pressure, temperature and volume

Liquid Volume

* Heat flux - Boiling or free convection to wet wall

- Radiation to Dry wall, GH2
* Boiloff due to heat flux, boost pumps and misc. items (service

hatch, supports, plumbing, etc.)

* Boiloff due to tank pressure fluctuations

* Final fuel temperature and volume
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Ambient/Outer Skin

* Radiation equilibrium skin temperature

- Radiation to space

- Radiation to earth

- Aeroheating

Temperature Distribution

* Materials properties versus temperature data (density, specific

heat, thermal conductivity, etc.)

Air Gap

* Free convection heat transfer coefficients

* Radiation heat flux

The thermal model was constructed to obtain one-dimensional temperature dis-

tributions between the internal tank wall and the external skin at five points

(actually, ten points due to symmetry) of equal heat transfer around the tank.

Mission profile calculations were started after the tank was pressurized to

the scheduled 20 psia tank pressure. The insulation system, tank and aircraft

structure were assumed thermally stabilized before start of takeoff. Com-

puter calculations did not include analysis of liquid or gas stratification,

fuel sloshing, initial fuel subcooling due to pressurization, or variable

insulation thicknesses from tank top to tank bottom.

4.5.5 Results

Boiloff quantities, insulation system weights and interface temperatures are

shown on Figures 114 through 117 for the non-integral and Figures 118 through

120 for the integral tank system. Basic mission cumulative boiloff and

boiloff rate for two sets of insulation thicknesses are shown on Figure 114

for the non-integral tank configuration. The irregular evaporation rates

are due to the cumulative effects of varying fuel flow, wetted and dry tank

areas, aircraft Mach nos., and altitude.

Preliminary analysis predicted that significant tank pressure slumps would

occur during periods of high fuel flow due to insufficient boiloff. Prelim-

inary work, however, assumed an average boost pump heat rejection rate over
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the entire flight profile, did not include radiation from the dry tank wall to

the liquid surface, and did not account for additional fuel surface boiling

when tank pressure was less than saturation pressure. Detailed analysis of

these factors in the present study shows that boiloff is sufficient to main-

tain the 138,000 newton/m2 (20 psia) pressure schedule throughout the mission

profile. Boiloff for the basic mission typically represents from 3 to 7 per-

cent of the initial fuel weight.

Examination of the curves illustrates the following well known trends for

cryogenic insulation systems:

1. Increasing cryogenic insulation thickness decreases boiloff losses,

but also increases the maximum cryogenic/high temperature insulation

interface temperature (or peak foam temperature).

2. The higher peak foam temperature may require additional high tem-

perature insulation, which in turn, increases total insulation

system weight.

The minimum weight insulation system is determined by cross-plotting the

locuses of minimum boiloff plus insulation weight points with maximum interface

temperature as shown on Figures 115 and 118. Note that insulation system

weights shown on all of the enclosed curves do not include the metal tank

weight, and neither the external skin and structure weight (non-integral) nor

the graphite/kevlar polyimide heat shield weight (integral).

The previous discussion has used the term minimum weight system as a criteria.

This represents only the inflight losses and does not attempt to evaluate the

system with regard to the following considerations:

1. The effect of ground hold on losses

2. Sufficient insulation to prevent excessive frost formation on the

exterior surface.

3. The economic considerations of initial insulation weight and cost

vs. the total cumulative boil-off over the life of the airplane.

While item 3~isof real consideration, it is beyond the scope of the present

study particularly in view of the uncertain cost of hydrogen. Items 1 and 2

were investigated however and were found to place limitations on realizing
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the "minimum weight" system. The most severe limitation was found to be the

avoidance of frost formation on the bottom of the fuselage on a hot day with

an assumed 5 mph wind. While it is realized that the maximum build up of

frost will be limited due to the inherent insulating properties of the frost

itself a minimum skin temperature of 40 F was selected for conservatism. A

comparision of the non-integral and integral systems selected based on this

limitation is shown in Table 29. The weight fractions shown here were used in

the weight inputs to generate the integral tank point design vehicle.

The results of this study are summarized as follows:

1. The use of a heat shield of low conductance in the integral tank

concept is lighter than the non-integral system.

2. Exterior fuselage temperature is the limiting factor in reducing

the total boiloff and insulation weight to a minimum.

3. Variations in insulation thickness, top to bottom, may provide a

more optimum system.

TABLE 29

COMPARISON OF NON-INTEGRAL VS INTEGRAL INSULATION SYSTEMS

Non-Integral Integral

Max. Foam Temp. K (R) 427 (760) 427 (760)

Min. Ground Hold Ext.
Surface Temp. OK (R) 278 (500) 280 (504)

Foam Thickness cm. (in.) 6.35 (2.5) 6.35 (2.5)

Hi Temp Thickness cm. (in.) 4.57 (1.8) 2.85 (1.12)

Wt. Fractions: (Wt./Wt.H2)

Low Temp. Insul. 0.0301 0.0301

High Temp. Insul. 0.0487 0.0299

Total Insulation 0.0788 0.0600

Boiloff 0.0355 0.0300

Total Boiloff & Insul. 0.1143 0.0900

233
LOCKHEED



5.0 CONCEPT VIABILITY

The purpose of the study was to determine the feasibility of using liquid

hydrogen as the fuel for commercial supersonic transport aircraft. In this

section the results are reviewed to provide conclusions regarding the

matter.

5.1 CRITICAL EVALUATION

Four bases of critical evaluation are considered in the following paragraphs

to provide insight as to the viability of the LH2 fueled AST aircraft.

5.1.1 Comparison with Equivalent Jet A-i Vehicle

One of the overriding objectives of the Phase II effort was to provide a

design of LH2 fueled AST which could be compared directly with a hydrocarbon

(Jet A-1) fueled version. The payload and original ground rules of the

subject study were modified to provide a comparable basis for design with the

Jet A-I fueled AST being developed under Contract NAS1-12288 (Reference 4).

Table 30 presents a number of relevant factors to compare characteristics of

aircraft designed to use .each of the fuels. Both aircraft are designed to

carry a payload of 49,000 lb. (234 passengers) 4200 n.mi. and cruise at

Mach 2.7. They are designed to the same technology state-of-the-art, defined

by the work of Reference 4 as that which is presumed to be available for

start of hardware development in 1981.

As seen in the table, the LH2 AST gross weight is less than half that of the

Jet A-I fueled design. This leads to lower airline operating costs for a

variety of reasons, e.g., wheels, tires, and brakes, all sized as functions

of gross weight, are among the most significant maintenance cost items. Low

gross weight also minimizes ground handling problems and cost of equipment.

In addition, low gross weight also means smaller engines since engines

basically are sized to provide the thrust/weight ratio needed to meet takeoff

field length requirements, modified as needed to also meet noise limitations.

Smaller engines mean lower initial cost as well as lower maintenance costs.

Operating empty weight is 72 percent that of the Jet A-i vehicle. This

reflects a significant reduction of inert weight which need not be either

Preceding page blank
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TABLE 30

COMPARISON OF JET A-i AND LH2 FUELED SUPERSONIC TRANSPORTS

OF ADVANCED DESIGN

Fuel JET A-1 LH 2

Payload (Ib) kg. (49,000) 22,226 (49,000) 22,226

Range (n.mi.) km. (4,200) 7,778 (4,200) 7,778

Cruise Speed Mach 2.7 2.7

Takeoff Gross Weight (Ib) kg. (750,000) 340,194 (368,000) 166,922

Operating Empty Weight (Ib) kg. (309,700) 140,478 (223,100) 101,196

Fuel Weight, Mission (Ib) kg. (326,000) 147,871 (81,440) 36,941
Total (Ib) kg. (391,300) 177,491 (95,900) 43,500

Fuel Volume (ft3 ) m3  (8,290) 234.7 (21,700) 614.5

Wing Area (ft2) m2  (10,822) 1005.4 '(6,880) 639.2

Wing Loading (W/S) Takeoff (lb/ft2 ) kg/m 2  (69.3) 338.4 (53.5) 261.2
Landing (lb/ft 2) kg/m 2  (39.1) 190.9 (41.7) 203.6

Span (ft) m (132.5) 40.39 (105.6) 32.19

Overall Length (ft) m (297) 90.5 (328) 100.0

Lift/Drag (cruise) 8.5 6.99

Specific Fuel Consumption (cruise) ((Ib/hr)/Ib) kg/hr/daN (1.51) 1.54 (0.561) .572

Thrust/Weight (SLS) 0.477 0.50

Thrust Per Engine (Ib) kg. (89,500) 40,597 (46,000) 20,865

Weight Fractions Percent

Fuel 52.2 26.1

Payload 6.5 13,3

Structure 25.3 33.5

Propulsion 10.0 15.8

Equipment and Operating Items 6.0 11.3

Energy/Seat. Mi. (BTU/ joule/ (6102) 3,479 (4274) 2,437
seat n.mi) seat m

manufactured (at an average cost of about $109/kg ($240/lb) for typical

supersonic transport aircraft structure), or lifted and accelerated to cruise

conditions on every flight for the life of the aircraft. These results also

lead to airline operating economies.
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One of the most interesting items observed in the table is the fact that there

is a factor of 4.08 difference in the total fuel weight required by the two

aircraft. However, the ratio of the average specific fuel consumption (SFC)

values during cruise listed in the table is only 2.69. It might be expected

that the same ratio should apply for both parameters. The fact that there is a

higher ratio for the fuel weights than there is for the SFC's,is largely accounted

for by the greatly reduced weight which must be lifted and accelerated by the

hydrogen fueled aircraft. This reduced weight consists of not only the inert

weight factor mentioned above, but also the much lighter fuel load. The re-

duced fuel load is mainly attributable to the SFC ratio; however, it is also

favorably affected by the consideration that because the vehicle is lighter to

begin with, for a given L/D it will require less thrust to overcome drag, there-

fore it will consume proportionately less fuel. It is seen that the L/D for

the LH2 aircraft is lower by almost 18 percent, but its average weight in

cruise is lower by approximately 48 percent, thus leading to the favorable

effect on fuiel required during the flight.

Examination of the physical characteristics of the aircraft shows the LH2 AST

to be longer, have a shorter span and a much smaller wing. The wing loading

is much lower at takeoff but virtually the same at landing. The thrust per

engine is almost half that of the Jet A-1, but the thrust loading (uninstalled

total thrust, sea level static, standard day condition, divided by gross weight)

is higher.

Another factor of interest to compare the relative desirability of the two

aircraft is energy expended per available seat mile. The Jet A-1 AST uses

43 percent more BTU/available seat mile than does the LH2 AST, viz., 6102 BTU

vs. 4274 BTU per seat mile. It should be noted that neither of these numbers

includes the energy required to produce the fuels, nor to transport them to

the airport. Both values represent just the energy contained in the fuel

required by the respective aircraft to accomplish the given mission.

Table 31 lists some pertinent cost data for comparison of the two types of

aircraft. The costs are expressed in terms of 1973 dollars, calculated on the

bases noted. The LH2 AST aircraft is almost $20 million cheaper than the com-

parable Jet A-1 airplane in production, and development is estimated to cost
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TABLE 31

COST COMPARISON: JET A-i VS. LH2 AST's

(Refer to Table 30 for vehicle data)

Costs* Aircraft

Jet A-i LH2

RDT&E $106

Engine 950 659
Airframe 3,327 2,661

Total 4,277 3,320

Production Aircraft, each $ 67,328,000 47,967,000

Return On Investment (ROI) Percent 2.24 6.04

(After taxes)

Direct Operating Cost (DOC) s/SM

Flight Crew 0.088 0.098
Fuel and Oil 0.568 0.735
Insurance 0.181 0.137
Depreciation 0.583 0.441
Maintenance 0.468 0.376

Total 1.888 1.787

Indirect Operating Cost (IOC) i/SM 0.888 0.801

* Basis for Costs:

* production of 300 aircraft
* Fare = $9 + 0.0496 x Range (statute miles)
* passenger load factor = 0.55
* aircraft utilization = 3600 hrs/year
* fuel cost: Jet A-1 = 1.97 /lb

LH2  = 10/lb

almost a billion dollars less due largely to the lower airframe weight and use

of smaller engines. Direct Operating Cost (DOC) and Return On Investment (ROI)

are both strongly influenced by the cost of the fuel. The values of DOC and

ROI shown in the table are based on fuel costs which are artifically low for

both fuels. In September 1973, Jet A-1 sold for approximately 120/gal.

(1.780/lb. or 970 per 106 BTU). By early January 1974, the price had risen
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to 230/gal. (3.42€/lb. or $1.86 per 10 BTU) and airlines were quoting

future contracts with fuel suppliers at double that price (Reference 11).

In the same reference, the Chairman of the Civil Aeronautics Board was

quoted as saying the airlines may be conservative -- fuel prices may

increase as much as 500 percent. The cost of LH2 produced in large quan-

tities from coal is variously quoted at prices from $2.50 to $5.00 per 10

BTU (12.9 to 25.8/1lb.) delivered to the airport (Reference 12 and 14).

Figure 121 presents a plot of DOC for each type of aircraft as a function of

the cost of its fuel. The data of Figure 121 shows a hydrogen fueled AST can

be competitive on the basis of DOC when LH2 costs approximately 1.75 times

the price of Jet A-1. In other words, when Jet A-1 costs $2.00 per 106 BTU

(3.680/lb.), airline operators could afford to pay $3.50 per 106 BTU (18.50/
lb.) for LH2. It is significant that this comparison, favorable as it is to

the hydrogen aircraft, does not include consideration of cost advantages

resulting from the lower maintenance requirements and the longer life

anticipated for components on engines fueled with liquid hydrogen.

5.1.2 Community Acceptance

Community acceptance is herein considered in terms of noise, sonic boom over-

pressure, and exhaust emissions. Table 32 lists values of these factors for

both LH2 and Jet A-1 fueled AST aircraft.

The LH2 aircraft is more attractive in all aspects with the sole exception of

water vapor in the exhaust. That particular item may or may not be a disad-

vantage. It has not yet been decided by authorities whether the exhaustion

of quantities of H20 in the stratosphere due to SST fleet operation will

produce harmful effects.

Although there are no governmental restrictions concerning odors emitted by

kerosene fueled aircraft, the completely odor-free operation resulting from

use of LH2 fuel would be a positive factor in community relations in the

vicinity of airports.
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TABLE 32

COMMUNITY ACCEPTANCE PARAMETERS

Jet A-1 LH
AST AS

Noise EPNdB

Sideline 108 105.9

Flyover 108 104.3

Sonic Boom Overpressure n/m2 (psf)

Start of Cruise 89.5 (1.87) 63.2 (1.32)

End of Cruise 67 (1.40) 57 (1.19)

Maximum Encountered 120 (2.50) 99.6 (2.08)
(during climbout)

Exhaust Emissions

NOX gm/kg 3.7* low

CO gm/kg 90* None

Unburned Hydrocarbons gm/kg 0.5* None

H20 kg/sec 15.05 28.5
Odors Objectionable None

*Data from Reference 13 for GE-J85, simulated flight at Mach 1.6, 55000 ft.

5.1.3 Level of Technical Risk

Technology development required to permit start of development of LH2 fueled

AST aircraft can be considered in two categories: minimum and desirable.

The "minimum" category consists of those items which are necessary to accom-

modate the requirements of operating, handling, and maintaining aircraft of

the subject design with its cryogenic fuel in a safe, economical manner; the

"desirable" category includes additional items which can be seen will lead to

further significant improvement in the operation or cost of LH2 fueled AST

aircraft. Table 33 presents the items of technology development required for

both categories.
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TABLE 33

MAJOR TECHNOLOGY DEVELOPMENT REQUIRED

FOR LH2 FUELED AST AIRCRAFT

Minimum (necessary for the point design aircraft)

* Duct-burning turbofan engines designed to operate efficiently

on hydrogen fuel.

* Lightweight cryogenic insulation, e.g., PVC or polyurethane

foam, which is impervious to air, which can be bonded to an

aluminum tank and can demonstrate an acceptable effective

useful life.

* Lightweight high temperature insulation, e.g., fiberglass mat,

surface sealed with polyimide, impervious to air, satisfactory

for exposure to temperatures from OOF to +400
0F.

* Lightweight heat shield structural material having low thermal

conductivity, e.g., fiberglass core, graphite/Kevlar/polyimide

faced honeycomb sandwich, which is satisfactory for airline

service.

* Lightweight aluminum tankage, capable of withstanding airline

service, plus exposure to cryogenic temperatures and attendant

thermal stresses.

* A satisfactory vent system for the LH2 fueled aircraft.

* An aircraft fuel feed system including pumps, valves, quantity

sensors, heat exchanger, pressurization system and control, and

vacuum-jacketed lines acceptable for airline service.

* A ground supply and fuel handling system for use at airline

terminals.

* An acceptable specification and set of standards for handling

liquid hydrogen in routine airline operation.

-continued-
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Table 33 Major Technology Development Required For LH2 Fueled
AST Aircraft (Continued)

Desirable (improvements for additional advantage)

* Cryogenic insulation material which is impervious to gaseous

or liquid hydrogen and can be used inside the aircraft fuel

tanks. Alternatively, development of a barrier film which can

be applied over a cryogenic insulation to prevent permeation

by gaseous hydrogen into the insulation.

* Composite materials satisfactory for use as structure for an

integral cryogenic tank.

* Heat shield material and design which serves efficiently as a

high temperature insulation for application over the integral

tank structure.

None of the items listed under the "Minimum" heading are considered to

represent high technical risk. It is felt that with proper development effort,

by 1981, all technology required for start of final design of a liquid hydro-

gen fueled supersonic transport aircraft could be available.

5.1.4 FAA Regulation Compatibility

One of the ground rules for the subject design study was that the LH2 AST

should be compatible with FAA regulations. The following regulations

actively figured in establishing the configuration and performance

characteristics of the point design LH2 AST airplane:

o FAR Part 25 Certification

o FAR Part 36 Noise

o FAR Part 121.648 Fuel Reserves

o FAR Part 25 Runway Length

No exceptions to any of these regulations were found to be required for the

point design LH2 AST.
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5.2 MAJOR TECHNOLOGY DEVELOPMENT REQUIRED

Figure 122 is a conceptual view of a program which could be undertaken to

develop liquid hydrogen supersonic transport aircraft. The complete

program is represented to indicate the general correlation and phasing of

all major events. The major technology development items listed in Table 33

under the "Minimum" heading should be undertaken and completed before

"go-ahead" for final design in 1981.

1974 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

CONCEPT
STUDIES PROG IGO-AHEAD

START _-

MAJOR TECHNOLOGY DEVELOPMENT*

SYSTEMS DESIGN
STUDY FREEZE

DESIGN
COMPETITION FIRST

AIRCRAFT FLIGHT

DESIGN FIRST

FABRICATION DELIVERY

FLT TEST
OPERATIONS

PRODUCTION
CONSISTS OF: FABRICATION
EGIGINE DEVELOPMENT
CRYOGENIC INSULATION

FLT DEMO HIGH TEMPERATURE INSULATION
PROGRAM HEAT SHIELD

TANK DEMONSTRATION PROGRAM
FUEL FEED SYSTEM
AIRPORT FUEL SUPPLY SYSTEM
DESIGN AND HANDLING STANDARDS

Figure 122 . LH2 AST Conceptual Development Schedule
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5.3 CONCLUSIONS

Use of liquid hydrogen for fuel in a supersonic transport of advanced design

has many attractive advantages. The advantages to the air transport industry

of using a synthetic fuel which is completely independent of the supply of

petroleum are apparent, particularly in view of the dramatic developments of

the past two months (since the Arab oil embargo started in October, 1973).

On the basis of the cost analysis presented herein, the case for hydrogen

fueled supersonic transport aircraft is very clear: it is less costly to

develop; less costly to fabricate; and, given a price of LH2 per unit of

energy only 1.75 times that of Jet A-1, less costly to operate.

Aside from consideration of economics and the availability of fuel, the LH2
fueled AST offers advantages in being more acceptable to the community.

Environmental pollution is drastically reduced. Noise is lower and sonic

boom overpressures are lower along the flight path.

Energy expenditure per-passenger mile is significantly lower than for a

Jet A-1 aircraft of comparable design.

In addition, and undoubtedly one of the strongest reasons for recommending

use of hydrogen as the fuel for an American supersonic transport, it avoids

what would otherwise be a very significant increase in demand for petroleum-

based fuel, thereby not adding to the burdens of society in the 1990 era.
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6.0 RECOMMENDATIONS

In view of the many attractive advantages, it is recommended that development

of technology for LH2 fueled supersonic transport aircraft be actively

pursued. The following actions are recommended to further explore the

potential of such aircraft and to establish technology feasibility:

* Study alternate configuration concepts of LH2 AST'S which appear to

have advantage e.g., the wide-body version (CL-1701-4-1) discussed

at the Mid Term Oral Review, and an actively-cooled aluminum skin

version of the point design aircraft.

* perform additional studies of the point design aircraft to establish

better definition of the design, including windtunnel testing.

* build and test insulated model cryogenic tanks to determine their

capability for withstanding thermal cycling under simulated

structural loading conditions.

* investigate thermal protection system concepts.

* study aircraft ground handling and refueling operations to establish

specifications for equipment and procedures to assure safe,

economical practices.

* initiate a flight demonstration program based on conversion of

existing subsonic aircraft to LH2 fuel, to learn the practical

aspects of handling hydrogen in simulated airline operations

(Reference 13).

Preceding page blank
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APPENDIX A

COST MODEL DESCRIPTION

The cost models used in the evaluation of the Liquid Hydrogen AST consists

of subroutines to the ASSET program, plus a separate model on the CPS

(Conversational Programming System) terminal for calculating returns on

investment (ROI).

Development Cost Model

The cost estimates for the primary elements of development cost are deter-

mined by cost estimating relationships (CER's) which are determined by

statistical analysis of historical data from military programs. The basic

equations used to estimate the development cost for the airframe and engine

are modified versions of the CER's developed by the RAND Corporation

(references A-i and A-2). The RAND equations are modified to reflect air-

frame and engine manufacturer's experience. The engine equations are modi-

fied by information obtained from P&W and GE for liquid hydrogen engines.

The airframe engineering hour estimates by the RAND CER's are modified to

reflect a Lockheed in-house estimate. The Lockheed estimate is provided by

a methodology that has been developed through a detailed analysis of

Lockheel programs. The modifications to the RAND equations are provided by

the application of K factors to the basic equations.

The development cost model includes the following elements:

Prototype Aircraft Development Tooling

Design Engineering Special Support Equipment

Development Test Articles Development Spares

Flight Test Technical Data

Engine Development Avionics Development

The equations for determining the cost for each of the above elements are

shown in the Development Cost Model that follows.
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The cost for the prototype aircraft is determined from the flyaway cost model

and input to the development model. The prototype aircraft are costed on the

basis of the first few vehicles produced.

Development Cost Model

Prototype Aircraft

TPROT=TFLCO * XNYO

Design Engineering

RFDE = .0396 * WAMPR ** .791 * SS ** 1.526 * CXNYo ** .183

DIH = RFDE * XKE - SELHO = (Design Engineering hours less sustaining)

DIEC = DIH (DER + OER) * (1 + APRFF) = (design engineering cost)

Tooling

DTHB = 4.0127 * WAMPR ** .764 * SS ** .899 * CXNYO ** .178 *

DRT ** .066

DHT = DTHB * XKT - PTLHO = (Design tooling hours less sustaining)

DTC = DTH (DTR + OTR) * (1 + APRFF) = (Design tooling cost)

Development Test Articles

DSTA = (TAFCO/CXNYO) * XNSTA = (Cost for static test article)

DFUA = (TAFCO/CXNYO) * XNFTA = (Cost for fatigue test article)

DMTS = (TAFCO/CXNYO) * XMTSF = (Cost for systems test articles)

DART = (DSTA + DFTA + DMTS) * (1 + APRFF)

Flight Test

RFFT = .001244 * WAMPR ** 1.16 * SS ** 1.371 * CXNYO ** 1.281

DFT = RFFT (1 + APRFF).* XKFT = (Flight test cost including profit)

Engine Development

CEDCM = XMMAX ** .62 [(CXNY10+CXNYO)*XNENGC] ** .10

DCENG = CEDCF * [(TCE/1000)/XNENGC ]** CEDCE * CEDCM

Avionics

DAV = DPAVD * WAVUN + FAVDC
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Spares

DSPAR = ADSF * TAFCO + EDSF * TENCO + AVDSF * TAVCO

Special Support Equipment

DSSE = DSSEF * TFLCO

Technical Data

DDATA = DTDF (TFLCO+DIEC+DTC+DART+DFT+DCENG+DLENG+DAV+DSPAR+DSSE+DOT+DMT)

The description of the inputs and the factors for the development model are

included along with the description of the inputs for the production model

that follows.

Investment Cost Model

The Investment Cost Models includes subroutines to provide the cost for the

aircraft, the aircraft spares, and the special support equipment. The

primary element of investment is the aircraaft and it is given the most

attention in terms of detail and consideration of the labor and material cost

factors. The spares and special support equipment cost are treated as per-

centages of the flyaway cost of the aircraft. The production cost estimate

is made to the same general level of detail as the airplane group weight

statement. The production cost input format includes the following elements:

Material Cost Factors

Labor Cost Factors

Labor rates

Sizing and Learning Curve Factors

Sustaining Engineering

Sustaining Tooling

Engineering Change Orders

Quality Assurnace

Miscellaneous Costs

Warranty

Insurance and Taxes

Profit
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An illustrative example of the elements of the airframe and their representative

cost factors is shown in Table A-1. How these factors are applied is illustra-

ted in the schematic of the flyaway cost model shown in Figure A-1.

Airframe Material Cost

As shown by Table A-!, the material cost factors include representative cost

factors for various types of material for the structural elements of the air-

frame. The airframe production cost model has space for material cost factor

inputs for aluminum, titanium, steel, composites, and other. The various

types of materials are listed across the top of the input sheet (Table A-i).

A material cost factor is assigned to each type of material. The material

cost factors are applied to the amount of each type of material as determined

from the sizing program. The ASSET program determines the total weight of

each element from the performance and configuration input data. After the

total weight of the component is determined, the amount of each type of

material is obtained by applying percentage factors to the total. The per-

centage factors for each type of material are established through previous

analysis and input to the program.

Airframe Labor Cost

The same procedure as used in the materials is used in the labor subroutine,

except that the labor is in hours. After the total number of hours are

determined the labor rate is applied to arrive at the total labor cost.

The labor rates shown in Table A-i include the rates for design engineering,

tooling, manufacturing, quality assurance, and miscellaneous. Only the labor

rates for manufacturing and quality assurance are used for development engi-

neering and tooling.

Non-Structural Elements Cost Factors

The cost factors for these elements includes both labor and material. This

category includes the installation cost for the systems and equipments noted

as well as their manufacturing cost with the exception of the engine and

avionics. The installation costs for the engine and avionics are included

here but the purchased costs for these items are shown separately.
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After the labor hours, labor rates and material cost factors are applied to

each material type, the elements are summed to arrive at a total airframe

labor and material cost. These sums are then adjusted for quantity and size.

Sizing and Learning Curve Factors

The sizing factors are included to account for scaling of the labor and

material cost due to aircraft size. The learning curve factor accounts for

cost change due to quantity produced. The labor and material cost factors

shown in Table A-1 are normalized to a particular vehicle weight and produc-

tion quantity. The scaling factors modify the labor and material cost

according'to the size of the vehicle being analyzed and the number of aircraft

in the production program. The sizing and learning curve factors include:

Material Sizing Factor

Labor Sizing Factor

Material Learning Curve

Labor Learning Curve

Engine Learning Curve

Avionics Learning Curve

As noted by Figure A-1 the adjustment factors for quantity are applied to

the engine and avionics as well as the labor and material.

Miscellaneous Factors

There are cost items which must be included in the production cost of the

aircraft that are not part of the labor and material costs directly associated

with the manufacturing of the vehicle. These are such items as quality assur-

ance engineering changes, tool maintenance, sustaining engineering, warranty,

taxes, insurance and miscellaneous costs. The costs for these items is added

to the cost for the structural and non-structural elements to arrive at a

total airframe cost. These factors are applied against the total airframe

labor cost to arrive at the cost of each item. Costs are summed to obtain

a total airframe cost.

Engine Cost

The engine cost estimate is provided by a production cost equation, or

supplied by engine manufactures, and input to the model. The equation is
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,0 TABLE A-i

2 1ASSET COST INPUT

M CSTPRT O AS"T 1.0 1
Flags and Misc Inputs XMMAX 2.7 XMMIN U.25

XNENGL 0 TMAXLE O XNAVS 1.0 TMR 1.73 3

Production Schedule (300 A/C) XNY 12 XNY2 18 XNY3 24. XNY4 30 XNY5 36 XNY6 36
XNY7 36 XNY8 36 XNY9 36 XNY10 36 XNYO 4 5

Material Type AL TI Steel Composite Other

DPWIAL 12.72 DPWITI 52.35 DPWIST 15.90 DPWICO 114.48 DPWIOT 12.72 Wing
DPIAAL 12.72 DPIATI 38.90 DPTAST 15.90 DPrACO 106.08 DPTAOT 12.72 Tail
DPFUAL 12.72 DPFUTI 25.55 DPFUST 15.90 DPFUCO 114.48 DPFUOT 12.72 Fuselage

Material Cost Factors - $/lb DPLGAL 37.10 DPIGTI 47.23 DPLGST 42.41 DPLGC0 125.40 DPLGT 37.10 Landing Gear
DPNAAL 15.90 DPNATI 21.35 DPNAST 19.88 DPNACO 127.20 DPNA0T 15.90 Nacelle
DPAIAL 37.14 DPAITI 60.62 DPAIST 42.45 DPAIC0 109.56 DPAIOT 37.14 Air Induction
DPSCAL 127.20 DPSCTI 134.96 DPSCST 129.36 DPSCCO 208.61 DPSCOT 127.20 Surface Controls 12

HPWIAL 4.80 HPWITI 8.023 HPWIST 7.20 HPWICO 7.50 HPWIOT 4.0o Wing
HPIAAL 4.80 HPTATI 13.20 HPFAST 10.60 HPEACO 7.50 HPTAOT 4.80 Tail
HPFUAL 6.00 HPFUTI 9.00 HPFUST 7.20 HPFUCO 9.00 HPFUPT 6.00 Fuselage

Labor Cost Factors - hr/lb HPIGAL 0.12 HPIGTI 0.12 HPIGST 0.12 HPLGCO 0.12 HPLGOT 0.12 Landing Gear
HPNAAL 4.80 HPNATI 10.00 HPNAST 8.00 HPNAC0 6.00 HPNA0T 4.80 Nacelle
HPAIAL 5.40 HPAITI 11.20 HPAIST . 9.00 FPAICO 7.50 HPATIT 5.40 Air Induction
HASCAL 4.80 HPSCTI 11.50 HPSCST 8.00 HPSCCO 6.00 HPSC0T 4.80 Surface Controls 19

DPEC 175.00 FXECMC HPEC 2.50 FXECLH Engine Controls
DPTR 0 FXTRMC HP R 0.14 FXTRLH Thrust Reverser
DPES 51.62 FXESMC HIPES 2.58 FXESLH ECS
DPXI 215.00 FXXIMC HPXI 3.50 FXXILH Instruments
DPHY 161.23 FXHYMC HPHY 9.20 FXHYLH Hydraulics
DPEL 95.43 FXELMC HPEL 7.30 FXELLH Electrical

Non-Structural Element DPESS 15.90 FXSSMC HPESS 4.80 FXSSLH Engine Section

Cost Factors DPFE 42.46 FXFEMC HIPFE 3.27 FXFELH Furn. & Equip.
DPAM -0 FXAMMC HPAM 0 FXAMLH Armament
DPAG 44.54 FXAGMC HPAG 0.12 FXAGLH Auxiliary Gear
DPEI 0 FXEIMC HPEI 0.14 FXEILH Eng. Installation
DPAV 13.88 FXAVMC HPAV 4.20 FXAVLH Avionics Install.
DPSI 0.50 FXSIMC HPSI 0.67 FXSILH Systems Integr.
DPVC 0 FXVCMC HPVC O FXVCLH Vector Control
DPFS 27.70 FXFSMC HPFS 3.51 FXFSLH Fuel System 34

Manufacturing Support Factors QAPO 0.20 ECPO 0 PTMPO 0.25 SEPO 0.15 RMRO 0.35 XMISCO 0.04
QAP 0.20 ECP 0 PIMP 0.12 SEP 0.10 RMR 0.35 XMISC 0.04 36

Eng & Avionics Prod Cost Factors CEPCF 631,000 CEPCE 0.60 XLEPCF 0 XLEPCE 1.0 DPAVP 0 FAVPC 500,000 37

Tax Insurance, Warranty, ATAIF 0.10 ETAIF 0 AVTAIF 0 AWAF 0.05 EWAF 0 AVWAF 0
and Profit Cost Factors APRFF 0.15 EPRFF O AVPRFF 0 39

WEMTBM 213,058 XMCS 0.99
WEMTBL 227,064 XHCS 0.96

Sizing and Learning Curve XNMB 100 XMLCS 0.95
Factors XNHB 100 XHI1S 0.80

XNCEB 1.0 XCELCS 0.90

XNLEB 1.0 XLEIWS 0.90
SXNAB 1.0 XAVLCS 1.00 46

ir-



0 TABLE A-i0o
ASSET COST INPUT (Continued)

Material Type AL TI Steel Composite Other

DER 8.17 DTR 6.09 DMR 5.12 DQAR 6.29 DMISC 5.12
OER 9.20 OTR 12.36 OMR 10.72 OQAR 10.72 OMISC 10.72

Labor Rates DEGR 0 DTGR 0 DMGR 0 DQAGR 0
OEGR 0 OTGR 0 OMGR 0 OQAGR 0
XMGR 0 XAGR 0 XEGR 0 51

XKE 0.80 XKT 0.88 XKFT 0.37
XNSTA 1.0 SNFTA 1.0 XMTSF 0.30 ETSMR 0 EFTMR 0

RDTE Cost Factors CEDCF 21.3x10
6  

CEDCE 0.55 XLEDCE 0 XLEDCF 0 DPAVD 0 FAVDC 0
DRT 1.0 ADSF 0.15 EDSF 0.50' AVDSF 0.30

DSSEF 0.02 DTDF 0.005 DOT 0 DMT 0 56

PRT 3.0 PECF 0 PECE 1.0 APSF 0.15 EPSF 0.30 AVPSF 0.30
PSSEF 0.05 PIDF 0.005 POT 0 PMT 0 58

Operational (Military)
Cost Factors

65

Direct Operating Cost XNRITE 12.0 YEAR 1973 XICREWh 3.0 XNPASS 234 XNATT 8.0 XL 0.55
SSFB 15.0 IFB 20.0 FCSIR 0.7 MNTLIR 0.05 TG 15.0(DOC) Factors U 3600 IRA 0.0222 PERIOD 14.0 CT 0.10 COT 0.945 MBF 1.90 68

Indirect Operating Cost EVPAS 1.81xl0
6  

AVCARG 2000

IndreFact Operating Cost XKSE .0206 XK1OE 2.87 XKCO 58.0 XKAT 27.0 XKFB 0.58
XKPH 12.0 XKCH 96.0 XKOP .0061 XKOC .0065 XKGA 0.064 71

Return on Investment (ROI) CFARE .0496 XKFARE 9.0 XKFACC 0 TAXR 0.48 CARGF 0.30 72
Factor



taken from the latest RAND revision (Reference A-2) of their analysis of

turbojet and turbofan production cost. The RAND equation has been modified

by estimates provided by P&W and GE for the AST. The production cost

equation for the duct burning turbofan is of the form:

.6 -. 152
TCE (XNENGC)

Engine Production Cost = 631,000 (1000) (XNENGC)

Where

TCE = maximum seal level static thrust

XNENGC = number of engines in the production program.

The constant in the equation is changed to 546,000 for costing the turbojet

engine.

Avionics

The avionics estimates are provided by vendors or in-house analysis and input

to the model.

Additional Factors

The total summation of cost elements up to this point produces the flyaway

cost of the aircraft without profit and costs for warranty, taxes, and

insurance. The cost for these items is obtained by applying factors for each

to the total aircraft cost. These costs are incorporated into the total

aircraft production cost to arrive at the total vehicle flyaway cost except

for the amortized R&D.

DEVELOPMENT AND PRODUCTION
MODEL SYMBOL DEFINITIONS

TFLCO = Cost of prototype

CSTRT = Print Indicator (1 = detail, 0 = summary)

FAST = Indicator if AST or other

XMMAX = Maximum Mach number

XMIN = Minimum Mach Number - Stall Speed

XNENGL = Number of lift engines

TMAXLE = Maximum thrust of lift engines

XNAVS = Number of avionics suites

A-9
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TMR = Tooling material rate

XNY1-XNY = Number of aircraft delivered per year

XNYO = Number of aircraft in the development program

QAPO/QAP = Quality assurance factor for development/and production

ECPO/ECP = Engineering change order factor for development/and production

PTMPO/PTMP = Tool maintenance factor for development/and production

SEPO/SEP = Sustaining engineering factor for development/and production

RMRO/RMR = Raw material rate for development and production

XMISCO/XMISC = Miscellaneous cost factor for development/and production

CEPCF = Constant value for engine production cost formula - cruise

engine

CEPCE = Value of coefficient in engine production cost formula - cruise

engine

XLEPCF = Constant value for engine production cost formula - lift

engines

XLEPCE = Value of coefficient in engine production cost formula -

lift engine

DPAVP = Avionics production cost factor

FAVPC = Production cost for avionics

ATAIF = Airframe insurance factor

ESTAIF = Engine insurance factor

AVTAIF = Avionics insurance factor

AWAF = Airframe warranty factor

EWAF = Engine warranty factor

AVWAF = Avionics warranty factor

APRFF = Airframe profit factor

EPRFF = Engine profit factor

AVPRFF = Avionics profit factor

WEMTBM = Weight empty of aircraft being evaluated

WEMTBL = Weight empty of base line vehicle from which the cost

factors were developed

XNMB = Quantity at which the material factors were developed

XNHB = Quantity at which the labor factors were developed

XNCEB = Base quantity for cruise engines

XNLEB = Base quantity for lift engines

LOCKHEED A-10
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XNAB = Base quantity for avionics

XMCS = Material cost sizing coefficient

XHCS = Labor cost sizing coefficient

XMLCS = Material learning curve slope

XHLCS = Labor learning curve slope

XCELCS = Cruise engine learning curve slope

XLELCS = Lift engine learning curve slope

DER = Engineering labor rate (direct)

OER = Engineering overhead rate (indirect)

DEGR =

OEGR - Growth rates - not used

XMGR

DTR = Tooling labor rate (direct)

OTR = Tooling overhead (indirect)

DTGR

OTGR Growth rates - not used

XAGR

DMR = Manufacturing labor rate (direct)

OMR = Manufacturing overhead rate (indirect)

DMGR =

OMGR = Growth rates - not used

XEGR =

DQAR = Quality assurance labor rate (direct)

0QAR = Quality assurance overhead rate (indirect)

DQAGR =
QAGR =Growth rates - not used

DMISC = Labor rate for miscellaneous items

OMISC = Overhead rate for miscellaneous items

XKE = Complexity factor for engineering

XKT = Complexity factor for tooling

XKFT = Complexity factor for flight test

XNSTA = Number of test articles for structural tests

XNFTA = Number of test articles for fatigue tests

LOCKHEED A-1I
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XMTSF = Number of test articles for systems test

ETSMR = Engineering test material rate

EFTMR = Flight material rate

CEDCF = Constant value for cruise engine development cost

equation

CEDCE = Value of coefficient for development cost formula for

cruise engines

XLEDCF = Constant value for lift engine development equation

XLEDCE = Value of coefficient for development cost formula for

lift engines

DPAVD = Development cost factor for.avionics

FAVDC = Development cost for avionics

DRT = Production rate for development

ADSF = Airframe spares factor for development

EDSF = Engine spares factor for development

AVDSF = Avionics spares factor development

DSSEF = Special support cost factor for development

DTDF = Technical data cost factor for development

DOT = Operator trainer cost factor for development

DMT = Maintenance trainer cost factor for development

PRT = Maximum monthly production rate

PECF = Constant term for production engineering cost formula

PECE = Value of coefficient for production engineering cost

formula

APSF = Spares factor for production airframes

EPSF = Spares factor for production engines

AVPSF = Spares factor for production avionics

PSSEF = Special support equiment cost factor for production

PTDF = Technical data cost factor for production

POT = Cost for operator trainers

PMT = Cost for maintenance trainers
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OPERATING COST MODELS

The operating cost includes the standard elements normally found in the direct

and indirect operating cost (DOC/IOC) as reported by the airlines. The DOC model

is a modified version of the 1967 ATA method (Reference A-3). The modifications

to the DOC equations in the ATA method consists of: 1) combining the crew

cost equations into a general expression for any number of crew members and

2) expanding the maintenance equations into greater detail. The more detailed

maintenance equations are obtained from (Reference A-4). The IOC model consists

of set of expression derived through the combined efforts of Lockheed and

Boeing (Reference A-5). The indirect expense factors are those experienced

by the international carriers (Reference A-6).

DOC MODEL

XNYR

Flight Crew [3.0*(45+SSFB)+35(XNCREW-3)+IFB] *(1.0+FCSIR)* U

Fuel and Oil 1.02*U*(FB/TB*CFT+XNENGC*COT*.135)

Insurance IRA*TUACC

Depreciation (TUACC+SPARES)/PERIOD

Maintenance Equipment and Furnishings

Labor = [.5TF+1.0+(4.5TF+18)*WAF/106]*U/TB*MNTLR

Material = [.4TF+1. 20+(14TF+42)*WAF/10 6 ]*U/TB

Landing Gear

Labor = (1.0+10*WAF/106 )*U/TB*MNTLR

Material = (2.4+1.50*TUAFC/106 )*U/TB

Tires and Brakes

Material = (1.2+7.0*WAF/106 )U/TB

Other Systems

Labor = (15TF+3.3)*(WAF/106 ) 5 *XMMAX5*U/TB*MNTLR

Material = (1.4TF+.8)+(2.3TF+.7)*(TUAFC/106 ) *XMMAX 5*U/TB
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Structures

Labor = (1.0+50*WAF/106 )*XMMAX.5*U/TB*MNTLR

Material = (.3+.8TUAFC/106 )*XMMAX.5*U/TB

Other Power Plant

Labor = (19.OTF+.8)*(WAF/106 ) *XMMAX 5 *U/TB*MNTLR

Material = .3TF+.l+(.8TF+.l)*(TUAFC/106) *XMMAX"5

Engine

Labor = [.4TF+.2+(.018TF+.012)*TCE/XNENGC/103]U/TB*MNTLR*XNENGC

Material = (3.8TF+2.40) (ENGC/105 )U/TB*XNENGC

The above formulas calculate the DOC in terms of dollars per aircraft year.

This is converted to cents per seat mile by converting the dollars to cents

and dividing each element by the seat miles flown.per year.

IOC MODEL

Item I System Expense

System Expense = XKSE x direct maintenance labor dollar

Item II Local Expense
maximum takeoff weight

Local Expense = XKLOE x 1000 x departures

Item III Aircraft Control

Aircraft Control Expense = XKCO x departures

Item IV Cabin Attendant Expense

Cabin Attendant Expense = XKAT x Cabin attendant block hours

Item V Food and Beverage Expense

Food and Beverage Expense = XKFB x weighted revenue

passenger block hours

Item VI Passenger Handling Expense

Passenger Handling Expense = XKPH x Passengers enplaned

Item VII Cargo Handling

Cargo Handling Expense = XKCH x Total tons carried
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Item VIII Other Passenger Expense

Other Passenger Expense = XKOP x Revenue Passenger miles

Item IX Other Cargo Expense

Other Cargo Expense = XKOC x Revenue Freight ton miles

Item X General and Administrative Expense

G&A Expense = XKGA x Direct plus indirect Operating

expense less depreciation and insurance

DOC & IOC MODEL SYMBOL DEFINITIONS

XNRITE = Symbol for selecting the range

YEAR = Year input for calculating costs in the proper year's

dollars

XNCREW = Number of personnel in the flight crew

XNPASS = Passenger capacity of the aircraft

XNATT = Number of cabin crew

XLF = Load factor

SSFB = Flight crew supersonic flight bonus

IFB = Flight crew international flight bonus

FCSIR = Flight crew salary inflation rate

ENGC = Engine cost per engine

MNTLIR = Maintenance labor inflation rate

TG = Ground time in minutes

U = Utilization

IRA = Insurance rate

PERIOD = Depreciation period

CFT = Cost of fuel ($/LB)

COT = Cost of oil ($/LB)

MBF = Maintenance burden factor

REVPAS = Number of revenue passengers per year

AVCARG = Average pounds of cargo per flight

XKSE = System expense IOC factor

XKLOE = Local expense IOC factor
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XKCO = Aircraft control IOC factor

XKAT = Cabin attendant IOC factor

XKFB = Food and beverage IOC factor

XKPH = Passenger handling IOC factor

XKCH = Cargo handling IOC factor

XKOP = Other passenger expense IOC factor

XKOC = Other cargo expense IOC factor

XKGA = G&A expense IOC factor

CFARE = Fare cost factor - (function of distance)

XKFARE = Constant portion of the fare - (function of no. of

revenue passengers)

XKFACC = Facilities cost (dollar input)

TAXR = Income tax rate (decimal)

CARGF = Revenue per cargo ton mile

FB = Block fuel

TB = Block time

WAF = Weight of airframe (weight empty - engines)

TUAFC = Total airframe cost

TF = Flight time

TNACC = Total aircraft flyaway cost including R&D

Return on Investment (ROI) Model

The return on investment (ROI) for the AST is calculated by two methods for

two purposes. The method incorporated into the ASSET program is a simplified

method used for comparative analysis or screening. The second method is

established as a separate Computer program and provides a more detailed

accounting of the economic factors involved in a realistic ROI.

The ROI model has the capability of calculating the DOC and IOC or accepting

them as inputs, The DOC is calculated by the standard ATA method and by the

modified ATA method as incorporated into the ASSET program (more detailed

breakdown of the maintenance cost). The ROI model listing is included here

for information purposes. The input listing and definitions is also included.

The number in parenthesis indicates the input location in the program listing.

LOCKHEED
CALIFORNIA COMPANy



ROI INPUT SYMBOL DEFINITIONS

Y. (16.5) GT = gate time

2. (17) K = K factors for IOC equations

3. (18) MF = factors for modifying maintenance equations

4. (19) U = annual utilization

5. (19) TB = block time

6. (19) FB = block fuel

7; (19) CFA = flyaway cost of the airplane

8. (19) XNPASS = aircraft passenger size

9. (19) RANGE = stage length flown

10. (19) LF = load factor

11. (19) YRDP = number of years of depreciation

12. (20) AFST = airframe spares factor

13. (20) ENSF = engine spares factor

14. (20) SSE = special support equipment cost factor

15. (20) REV 1 = zero range fare constant

16. (20) REV 2 = fare cost as a function of range

17. (20) DBTR = debt to equity ratio

18. (20) IR = interest rate

19. (20GY TXRATE = tax rate

20. (20) AVCARG = average amount of cargo

.21. (20) REV 3 = revenue rate for cargo ($/ton mi)

22. (21) DSQ = number of aircraft in each quarter for a 10 year.

period

23. (22) AVAIL = number of aircraft available for operations from

fleet buy (decimal fraction of total fleet)

24. (31) WAF = weight of airframe (WE-engine wt)

25. (31) TOGW = take off gross weight

26. (31) SSFB = supersonic flight bonus for crew

27. (31) XNCREW = number in flight crew

28. (31) XNENG = number of engines

29. (31) THRUST = maximum sea level static thrust of the engine
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30. (31) IFB = international flight bonus for flight crew

31. (31) FCSIR = flight crew inflation rate

32. (31) MNTLIR = maintenance labor inflation rate

33. (31) XNYR = number of years for inflation (1967 to time period

of study)

34. (31) IRA = insurance rate

35. (31) PCTSAL = percent salvage

36. (31) CAF = cost of the airframe

37. (31) XMMAX = maximum cruise Mach number

38. (31) CE = cost of the engine

39. (31) XNATT = number of cabin attendants

40. (31) CFT = cost of fuel ($/lb)

41. (31) COT = cost of oil ($/lb)

42. (31) MBF = maintenance burden factor

*K factor inputs required if IOC is to be calculated. If IOC is available

($/year) then input-per line 188 of program.

**All of inputs on line 31 are required if DOC is to be calculated here.

If DOC is available ($/year), then input per line 188 of the program.

The final calculation of the ROI is of the form:

ROI = (REVENUE-EXPENSE-INTEREST) (1-TAX RATE) + INTERESTAVERAGE VALUE OF INVESTMENT
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RO I AST, VAUCHN E6710 01/18/74 PAGE 1

1. /*Propram name is ROIAST. Program calculates the ret
urn on investment of a fleet of AST type aircraft.*/;

2. /*The program either calculates the DOC and IOC, give
n the proper inputs, or it uses the input values of D
OC and IOC*/;

3. /*Contact LOU VAUGH,DICK KINSMAN,DEPT G7/10,EXT 7553
6"/;

4. DECLAkE TB(5) UEC(b),FO(5) DEC(b),RANGE(5) DLC(6);
5. DECLARE DOCFO(5) DE(E(b),DUC(5) DEC(6),DOCkiT(5) DEC(6)

6. DECLARE fIC(30,5) DEC(b) CTL,MCG(12,5) DEC(6) CTL,DOCE
L(10,5) DEC(6),K(12) DEC(6),JF(28) DEC(6),IOCEL(10,5)
DEC(6);

7. DECLARE T, FHC(5) DEC(6),Tt.IFCC(5) DEC(6),TLABI;(5) DEC(
6),TLABDI (5) DEC(6),TMATH(5) .DEC(6);

8. DECLARE IOC(5) DEC(6),IOCSUB(5) DEC(6);
9. DECLARE TITLE1(10) CHAR(25) VAR,TITLE2(6) CHIAR(14) VA

R;
10. DECLARE ACY(0:10) DEC(6),ACYAV(10) DEC(6),ACYAVL(10)

DEC(6);
11. DECLARE DSAV(10) DEC(6),DSY(10) DEC(6);
12. DECLARE DSQ(10,4) DEC(6),REV(10) DEC(10),ROI(10) DEC(

6),REVPAS(10) DEC(6),REVCAR(10) DEC(6);
13. DECLARE INVAV(10) DEC(6),DEPR(10) DEC(6),INT(10) DEC(

6),EXP(10) DEC(6),INC(10) DEC(6);
14. DECLARE BKVAL(10) DEC(6),DEPRS(0:10) DEC(6),CASH(10)

DEC(6);
15. DECLARE TOTDRT(0:10) DEC(6).,NEJWDBRT(10) DEC(6),AVDBT(1

0) DEC(6);
16. GET LIST(TITLE1,TITLE2);
16.5 GET LIST(GT);
17. GET LIST(K);
18. GET LIST (-F);
19. GET LIST(U,TB,FB,CFA,XNPASS,RAJNGE, LF,YRDP);
20. GET LIST(AFSF, ENSF,SSE,REV1,REV2,DB1R, IR,TXRATE,AVCAR

G,REV3);
21. GET LIST(DSQ);
22. GET LIST(AVAIL);
23. /*SET L=0 IF DOC AND IOC ARE TO BE CALCULATED,L=1 IF

ONLY ROI IS REQ'D. SET M=0 IF DETAILED tIAINT CALCS A
RE DESIRED*/;

24. GET LIST(L,M);
25. /*m=FIRST RANGE FOR WHICH ROI CALCULATION IS DESIRED,

n=LAST RANGE. IF ALL FIVE ARE DESIRED,m=1,n=5*/;
26. GET LIST(m,n);
30. IF L'=0 THEN GO TO SKIP2;
31. GET LIST(WAF,TOGW, SSFB,XNCREW,XNENG,THRUST, IFB, FCSIR,

MNTL I R, XNYR, I RA, PCTSAL, CAF, XMMAX, CE, XNATT, CFT, COT,M 1BF

-3-2. DOCFCR=(3*(45+SSFB)+35*(XNCREW-3)+IFB)*(1+FCSIR)**XNY
R*U;LOCKHEED RUA-19 EPRODUCIBILTY OF TIE
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33. DOCI=IRA*CFA;
34. DOCD=(CFA+CAF*AFSF+CE*XNENG*ENSF)/YRDP*(1-PCTSAL);
35. DO I=1 TO 5;
36. DOCFO(I)=1.02*U*(FB(1)/TB(I)*CFT+XNENG*COT*.135);
37. END ;
38. MNTLR=4*(1+MNTLIR)**XNYR;
39. IF M'=0 THEN GO TO GROSS;
40. /*EQUIPMENT AND FURNISHINGS LABOR*/;
41. ALLOCATE MC;
42. DO 1=1 TO 5;
43. MC(1, )=(.5+4.5*WAF/10**6)*rF(1)*MtITLR*(TR(I)-GT)*U

/TB(I);
44. IC(2,I)=(1+18*WAF/10**6)*M1F(2)*FNTLR*U/TB(1);
45. MC(3, I)=MC(1, I)+1MC(2, 1);
46. /*EQUIPIENT AND FURNISHINGS I.ATERIAL*/;
47. MC(4,I)=(.4+14*WAF/10**6)*MF(3)*(TB(I)-GT)*U/TB(1);
48. MC(5,I)=(1.2+42*WAF/10**6)*lF(4)*U/TB(I);
49. I1C(6, I)=t!C(4, I)+NC(5, I);
50. /*LANDING GEAR LABOR*/;
51. MC(7,I)=(1+18*WAF/10**6)*t- F(5)*N:iTLR*U/TB(1);
52. /*LANDING GEAR MATERIAL*/;
53. MC(8,I)=(2.4+1.5*CAF/10**6)*MF(6)*U/TB(i);
54. MC(9,I)=(1.2+70*AF/10**6)*iF(6)*U/TB(I);
55. MC(10, I)= C(8,I)+MC(9,I);
5b. /*OTHER SYSTEMS LABOR*/;
57. MC( 11, I )=.015*(WAF*XMMAX)**.5*iF(7)*.INITLR*(TB ( I )-GT

)*U/TB( I);
58. MC(12, I )=.0033*(WAF*Xt'AMAX)**.5*MF(8)*iNTLR*U/TB( I);
59. MC(13, I)=MC(11, I )+MC(12,I);
60. /*OTHER SYSTEMS MATERIAL*/;
61. MC(14,I)=(1.4+2.3*CAF/10**6)*XtM.AX**.5*NF(9)*(TB(I)

-GT)*U/TB(I);
62. MC(15,I)=(.8+.7*CAF/10**6)*XMMAX**.5*MF(10)*U/TB(1)

63. MC(16,I)=MC(14,I)+MFiC(15,I);
64. /*STRUCTURES LABOR*/;
65. MC(17,I ) =(1+50*WAF/10**6)*XtMAX**.5* MEF (11)*MNTLR*U/

TB(I);
66. /*STRUCTURES MATERIAL*/;
67. IC (18,I)=(.3+.8*CAF/10**6)*XMMAX**.5*MF(12)*U/TB( I )

68. /*OTHER POWER PLANT LABOR*/;
69. MC(19,I)=.009*(WAF*XMMAX)**.5*MF(13)*MNTLR*(TB(1)-G

T)*U/TB(I);
70. MC(20,I)=.0008*(WAF*XMMAX)**.5*MF(14)*MNTLR*U/TB(I)

71. MC(21,,I)=MC(19,I)+MC(20,I);
72. /*OTHER POWER PLANT MATERIAL*/;
73. MC(22,I)=(.3+.8*CAF/10**6)*XIMAX**.5*MF(15)*(TB(I)-

GT)*U/TB(I);
74. MC(23,1)=(.l+.l*CAF/10**6)*XtM.AX**.5*NF(16)*U/TB(1)
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75. MC(24, I)=M'IC(22, I)+MC(23, I);
76. /*ENGINlE LABOR*/;
77. MC(25, I)=(.4+.018*THRUST/10**3)*M1F(17)*XNENG*MNTLR*

(TB(I)-GT)*U/TB(I);
78. C(26, I ) =(.2+.012*THRUST/10**3)* 4F (18)*XNENG*MNTLR*

U/TB(I);
79. INiC(27, I.)=MIC(25, I )+MC(26, I);
80. /*ENGINE M1ATERIAL*/;
81. MC(28,I)=3.8*CE*XNENG/10**5*MF(19)*(TB(I)-GT)*U/TB(

I);
82. MC(29,I)=2.4*CE*XINENG/10**5*I .F(20)*U/TB(I);
83. MC(30, 1)=[;C(28, I)+(fC(29, I);
84. /*TOTAL MAINTENANCE FLIGHT HOUR COST*/;
85. Tt FHC (I)=(MC(1, I)+ C(4, I )+MC(11, I)+MiC(14, I)+MC(19, I

)+MC(22,1)+MC(25,1)+MC(28, I))/U;
86. /*TOTAL tAINTENANCE FLIGHT CYCLE COST*/;
87. TMFCC( I )=(MC(2, I )+MC(5, I )+M C(7, I )+MC(10, I )+iC(12, I)

+MC(15, 1 )+MC(17, I )+tIC(18, I )+ MC(20, I)+MiC(23, I )+MIC(26
I )+fC(29, I))*TB(I)/U;

88. /*TOTAL MIAINTENANCE LAROR*/;
89. TLABH( (I )=MC(3, I)+IC(7, I)+MC(13, I )+1!C(17, I)+MC(21, 1)

+MC(27, I);
90. /*TOTAL MAINTENANCE BURDEN*/;
91. TLABFB ( I ) =IIBF*TLABN( I );
92. /*TOTAL MAINTENANCE M!ATERIAL*/;
93. TMATM( I)=!MC(6, I)+MC(10, I)+VC(16, I)+MIC(18, 1)+MC(24, I

)+MC(30,I);
94. END ;
95. FREE M1C;
96. IF M=0 THEN GO TO SKIP1;
97. CROSS: ALLOCATE MCG;
98. DO 1=1 TO 5;
99. /*AIRFRAHE LABOR*/;

100. MCG(1, I)=(.05*WAF/10**3+6-630/(WAF/10**3+120))*tlF(2
1)*MNTLR*XI.iAX**.5*U/T ( I);

101. tMCG(2,1)=.59*H1CG(1,I)*(TB(I)-GT)*MjF(22);
102. MCG(3, I)=hiCG(1, l)+tICG(2, I);
103. /*AIRFRAIME MIATERIAL*/;
104. MCG(4,I)=3.U8*CAF/10**6*IF(23)*(TB(I)-GT)*U/TB(I);
105. ,.MCG(5, I )=6.24*CAF/10**6*F(24)*U/TB(I );
106. MCG(6, I)=MCG(4, I)+ CG(5,I);
107. ;/*ENGINE LABOR*/;
108. MCG(7, 1 )=(. 6+.027*THRUST/10**3)*XNJENG*iF( 25)*MNTLR*

(TB(I)-GT)*U/TB(I);
109. tMCG(8,1)=(.3+.03*THRUST/10**3)*XNENG*F(26)*MNTLR*U

/TB(I);
110. '-.MCG(9, I)=MCG( 7, I )+MCG(8, 1);
111. /*ENG I IE IMATERIAL*/;
112. MCG(10,I)=K(11)*XNENG*CE/10**5*MF(27)*(TB( I )-GT)*U/

TB(I);
113. MCG(11, I ) =K(12)*XrENG*/10**5*U/TB(I )*F(28);
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114. MCG(12,1)=MCG(10,1)+ CG(11, I);
115. /*TOTAL MAINTENANCE FLIGHT HOUR COST*/;
116. TMFttC( I)=(ICG(4, I)+NCG(2, I)+NCG(7, I)+MCG(10, I))/U;
117. /*TOTAL MAINTENANCE FLIGHT CYCLE COST*/;
118. T FCC(I ) = (MCG(5, 1 )+MCG( 1, I )+ CG(8, I )+MCG( 11, I)) *TB(

119. /*TOTAL MAINTENANCE LABOR*/;
120. TLABM( I ) =CG(3, I )+ICG( 9, I);
121. /*TOTAL MAINTENANCE BURDEN*/;
122. TLAB4B(I )=fMBF*TLABM(I);
123. /*TOTAL tMAINJTENANCE MATERIAL*/;
124. TMATfM( I)=fCG(6, I)+MCC(12, I);
125. END ;
126. FREE MCG;
127. SKIP1: DO I=1 TO 5;
128. DOCMT( I )=TLABfI( I)+TLABMR( I )+TIM ATM( I);
129. DOC(I)=DOCFCR+DOCFO(I)+DOCI+DOCD+DOCMT(I);
130. END ;
131. DO 1=1 TO 5;
132. DOCEL(1, )=DOC(I)/U;
133. DOCEL(2,I)=DOCEL(1,1)/(RANGE(I)/TB(1));
134. DOCEL(3,I)=DOCEL(2,1)/XNPASS;
135. DOCEL(4, )=DOCEL(3, I)/LF;
136. DOCEL(5, I)=DOCFCR/(U/TB(I)*RANGE());
137. DOCEL(6,I)=DOCFO(1)/(U/TB(I)*RANGE(1));
138. DOCEL(7,I)=DUCI/(U/TB(I)*RANGE(I));
139. DOCEL(8,1)=DOCD/(U/TB(1)*RANGE.(I));
140. DOCEL(9,1)=DOCMT(I)/(U/TB(I)*RANGE(I));
141. DOCEL(10,I)=DOC(I)/(U/TB(I)*RANGE(I));
142. END ;
143. PUT LIST(' SYSTEIi DIRECT OPERATING COSTS (DO

LLARS/MILE)' );
144. PUT LIST(lf(1));
145. PUT EDIT('RANGE (ST MI)',RANGE(1),RANGE(2),RANGE(3),R

ANGE(4),RANGE(5))(A(19),(5) (F(9)));
146. PUT EDIT('BLOCK TIM!E(HOURS)',TB(1),TB(2),TB(3),TB(4),

TB(5))(A(19),(5) (F(9,3)));
147. PUT EDIT('BLOCK FUEL(LBS)',FB(1),FB(2),FB(3),FB(4),FB

(5))(A(19), (5) (F(9)));
148. PUT LIST(lf(1));
149. DO 1=5 TO 10;
150. IF I=10 THEN PUT LIST(1f(.5));
151. PUT EDIT(TITLE2(I-4),DOCEL(I,1),DOCEL(I,2),DOCEL(I,

3),DOCEL (I ,4),DOCEL(I ,5))(A(19),(5) (F(9,3)));
152. END ;
153. PUT LIST(1f(2));
154. DO I=1 TO 5;
155. I OCEL(1, I ) =K(1)*TLAB (I) / (RA GE( I )*U/TB( ) );
156. IOCEL(2,I)=K(2)*(TOGW/10**3)/RANGE(I);
157. IOCEL(3,I)=K(3)/RANGE(I);
158. IOCEL(4,I)=K(4)*UJ*XNATT/(RANGE(I)*U/TB(I));
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159. IOCEL(5,1)=K(5)*U*XNPASS*LF/(RANCE(I)*U/TB(I));
160. IOCEL(6, 1)=K(6)*Xr!PASS*IF/RANCGE(I);
161. IOCEL(7,I)=K(7)*AVCAPG/(2*10**3*RANCE(I));
162. IOCEL(8,I)=K(8)*XNPASS*LF;
163. IOCEL(9,I)=K(9)*AVCARG/(2*10**3);
164. END ;
165. DO J=1 TO 5;
166. IOCSUB(J)=0;
167. DO I=1 TO 9;
168. I OCSUB(J)=IOCSUB(J)+IOCEL(I ,J);
169. END ;
170. END ;
171. DO 1=1 TO 5;
172. IOCEL(10,I)=K(10)*(DOCI-OCD-DOCI)/(RANGE(I)*U/TB

(I))+K(10)*IOCSUB(I);
173. END ;
174. DO J=l TO 5;
175. IOC(J)=0;
176. DO 1=1 TO 10;
177. IOC(J)=IOC(J)+IOCEL(IJ);
178. END ;
179. END ;
180. PUT LIST(' SYSTEM INDIRECT OPERATING COSTS (DO

LLARS/MI LE) ') ;
181. PUT LIST(lf(1));
182. DO I=1 TO 10;
183. PUT EDIT(TITLE1(1),IOCEL(I,1 ),IOCEL(I,2),IOCEL(1,3)

,IOCEL(1,4),IOCEL(I,5))(A(19),(5) (F(9,3)));
184. IF 1=10 THEN PUT LIST(lf(.5));
185. END ;
186. PUT EDIT('TOTAL IOC',IOC(1),IOC(2),IOC(3),IOC(4),IOC(

5))(A(19),(5) (F(9,3)));
187; IF L=0 THEN GO TO SKIP3;
188. SKIP2: GET IIST(DOC, IOC);
189. SKIP3: DEPRS,ACY(0),INCSUM, BKVLSM, I NTSUNM,TOTDBT(0)=0;
190. COST=CFA*(1+SSE)+AFSF*CAF+ENSF*CE*XNENG;
191. DO I=m TO n;
192. IF L=0 THEN IOC(I)=IOC(1)*RANGE(I )*U/TB(I);
193. PUT LIST(lf(2));
194. NWDTS=O;
195. DO J=l TO 10;
196. DSAV(J)=(4*DSQ(J,1)+3*DSQ(J,2)+2*DSQ(J,3 )+DSQ(J,4

197. DSY(J)=DSQ(J,1)+DSQ(J,2)+DSQ(J,3)+DSQ(J,4);
198. ACY(J)=ACY(J-1)+DSY(J);
199. ACYAV(J)=ACY(J-1)+DSAV(J);
200. ACYAVL(J)=ACYAV(J)*AVAIL;
201. REVPAS(J)=(REV1+REV2*RANGE(I))*XNPASS*LF*U/TB(I)*

ACYAVL(J);
202. REVCAR(J)=AVCARG/2000*U/TB(I)*RANGE(1)*ACYAVL(J)*

REV3;
LOCKHEED A-23 Aa.riU i) UCIBILITY OF THE
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203. REV(J) =REVPAS(J)+REVCAR(J);
204. INVAV(J)=ACYAV(J)*COST;
205. DEPR(J)=INVAV(J)/YRDP;
206. DEPRS(J)=DEPRS(J-1)+DEPR(J);
207. NEWDBT(J )=DBTR*DSY(J)*COST;
207.5 NWDTStI=NWDTSM+NEWDBT(J);
208. TOTDBT(-1)NEWDBTj)+NEWDBT(j)-.1*NWDTSM ;
209. AVDBT(J)=TOTDBT(J-1)+DBTR*DSAV(J)*COST;
211. INT(J)=IR*AVDBT(J);
212. EXP(J)=(DOC(I)+IOC(I ))*ACYAVL(J);
213. BKVAL(J)=INVAV(J)-DEPRS(J);
214. IF REV(J)-EXP(J)-INT(J)<0 THEN INC(J)=REV(J)-EXP(

J); ELSE INC(J)=REV(J)-EXP(J)-TXRATE*(REV(J)-EXP(
J)-INT(J));

215. CASH(J)=I1IC(J)+DEPR(J)-I NT(J);
216. ROI (J)=I!C(J)/BKVAL(J);
217. INCSUM=INCSU!M+INC(J);
218. BKVLStr=BKVLSM+BKVAL(J);
219. END ;
220. ROIAV=IN rCSUM/BKVLSM;
221. PUT EDIT(' RATE OF RETURN ON INVES

TMENT FOR',RANGE(I),' STATUTE MILE RANGE AIRCRAFT
')(A,F(8),A);

222. PUT LIST(1f(.5));
223. PUT LIST('YEAR AVG NO AIRCRAFT AVERAGE CUMUL

A- AVERAGE REVENUE INTEREST OPERATING CAS
H ROI');

224. PUT LIST(' AIRCRAFT ADDED INVESTMENT T
IVE BOOK EXPENSE EXPENSE INFL
OW');

225. PUT LIST(' DURING DURING DURING DEPRE
- VALUE OF');

226. PUT LIST(' YEAR YEAR YEAR CIA
TION COMPANY');

227. PUT LIST(' $M $m
$M. $M $M $M $

228. PUT LIST(lf(.5));
229. T=1/10**6;
230. DO J=l1 TO 10;
231. PUT EDIT(J,ACYAV(J),DSY(J),INVAV(J)*T,DEPRS(J)*T,

BKVAL(J)*T,REV(J)*T,INT(J)*T,EXP(J)*T,CASH(J)*T,R
OI(J)*100)(X(3),F(2),X(3),F(6,2),X(5),F(5,2),X(2)
,(7) (X(2),F(8,2)),X(3),F(6,2));

232. END ;
233. PUT LIST(lf(.5));
234. PUT EDIT(' AVERAGE ROI OVER THE TEN YEAR

PERIOD=',ROIAV*100,' ) (A,F(5,2),A);
235. END ;
236. PUT LIST(lf(.5));
*ROIAST,VAUGHN 15,636 BYTES 203 SYMBOLS CREATED 73.241 BY D6710
LAST SAVED 74.016 LAST LOAD 74.018
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APPENDIX B

COMPUTER PRINTOUT

ASSET PARAMETRIC ANALYSIS

CL-1701-6

LH2 -AST

D-B TURBOFAN ENGINES

B-I
LOCKHEEDCACIFORNiA C OMSANY



~WU Y JO Nu. 201 . . . AS L 1 i PAR1T K C -A NALVS S JANUA*51 1974

Mm AIRL.AFT MUDLL -- LL 1701-6 ENGINE 1.D. - 1000 WING QUARTER CHORD SWEEP = 08.63 DEG
m 1.0.-. UA1 -- 1990 SLS SCALL 1.0 = 61330 WING TAPER RATIO = 0.0u tSl1bh sPLEu --SUPEkSONIC NUMBER OF ENGINES = 4.

1 w/S 53.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.;0"A 1/ 0.500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 AR 1.62 0.0 0.0 0.0 0.0.0 0.0 0.0 00 0.0 .0 00 00.0.0
4 I/L :.00 0.0 0.0 0.0 . 0.0 O.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 ,AlUS N. MI 4200 0 ( 0 0 0 0 0 0 0 0 0 0 0 0 0

b Lk1,i 5 welLthl 3bbO54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 FutL WLIGhT 9.959 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b UP. wl. EMPIY 223094 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S9 itkU FULL Wl. 272094 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Inn.'S I/iGKIh 4,Ob 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0
11 t ,lINL E(AL __ 0.56 0..0 0.0 0.0 0.0 0.0 0 .0 00 00 0.0 0.0. 0 0.0 0.0 0.0 0.0 0.0 0.0
12 . T A O. . 0. O . 0. O 0. -0 . . O. . 0. 0..0 0 0 O. O.
13 WiNl SPAr 105. 0.0 0.0 0.0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 t.. 1AIL ARLA 527 ? 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0
l V. TAIL AKEA 79.6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
it bL LY L - l/. ).1t2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 I U - l L. -.0 0.0 0.0 00 0.0 0.0 00 0 .0 0.0 0'6 0 0 00 00 0 0.0 0.o o.o

N) 1 I9 .VLIMNl- EIL. 1.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d' I, - IU 7.41 0 .0 0.0 oo 0.0 o 0.0 0.0 0.0 0.0 0.0 0.0 0.o o0 0.0 0.
21 IMc - 0L/ O.0l 0.0. 0.0 0.0 0.0 0.0 O.U 0.0 0.0 0.0 00 0.0 0.0 0.0
2- l.1. -L /0 t.o_ A.oI. _ . u .o _ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.0 0.0 0.0

LINSIPAJNt blPul1
. ILrnltU- LIill 7141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SLLML: AfI (1 0.2007 0.0 .0 0.0 0.0 0.0 0.0 0.0 O .0 0. 0. 0 0.0 0.0 0.0 0.0

29b )1ALLt- L .i2) 09bb 0 0 0 0 0 0 0 0 0 0 0 0 0
26 LLMnL bLAuI2) 0.0t00. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.o 0.0 0.0 0.0

7 LILL LNLG D) 4239 . 0 O 0 0 0 0 0 0 0 0 0 0
Lt A

p 
SHtID- I(l) 153.5 0. u.0 o.u 0.0 o.o o.o 0.o 0.0 0.0 0.0 0.6 0. 0.0 0.0 0.0

29 LILL LFbb U.2) 9365 0 u 0 0 0 0 0 0 0 0 0 0 0 0 0
3U 4Y SPLL-I2) 14.t O.oU 0.0 0o0. 0.0 O.O 0.0 0o.0 0.0 0.0 0o.0 0.0 O.0 O.o 0o.0 0.0
31 LILL LNDiG 0(3) 9491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i.Z A I' SLb-U-K1 (3 156.1 0.0 0.0 0.0 U.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



M 1 S.Ig- O SUIF-MMKAR YW

CL 1701-b Lh2-AS1 uD-B TURBOFAN ENGINES

0 SEGMEN1 INIT INI1 IN1T SEGMT TOTAL SEGMT TOTAL SEGHT TOTAL EXTERN ENGINE EXTERN AVG AVG MAX

0O ALlIlUDE MACH WLIGhl FULL FUEL DIST DIST TIME TIME STORE IHRUST F TANK L/D SFC OVER

zx IFT) NO ILb) (Lb) ILb) IN MI) IN MI) (MIN) MIN) TAB ID lAb ID TAB ID RATIO (FF/T) PRES

PUWtR 1 0. 0.0 3bb05. 457. 457. 0. 0. 10.0 10.0 0. -1101. 0. 0.0 0.149 0.0

0ER2- .. ,300 36-7-97----- 69-6--.- 1- 3. . o. 0. . 0. 1209. O. 6.35 0.359 0.0

CLIMb 0. 0.300 366901. 941. 2094. S. 54 1.2 11.7 0. 1209. 0. 8.3b 0.377 0.0

LKUISE 5000. 0.414 365960. 583. 2676. 0. 5. 4.0 15.7 0. -1101. 0. 9.01 0.215 0.0

ACC. L 000. 0.414 365377. 202. 2b79. 4. 9. 0.7 16.4 0. 1101. 0. 9.89 0.233 0.0

LLlhb 5000. 0.539 365175. 4552. 7431. 103. 112. 13.7 30.1 0. 1101. O. 9.84 0.336 0.0

LLIM1 '34000. 0.9b9 300623. lo451. 23862. 447. 559. 24.0 54.2 0. - 1206. O. 6.20 0.558 0.0

LLIMb 3b000. 2.700 -344172. 444. 24326. 21. 560. 0. 55.0 0. .1206. 0. 6.92 0.574 0.0

LRUIS bouUO. 2.700 343727. 55622. 8014b. 3420. 4000. 132.3 187.3 0. -1201. 0. 6.99 0.561 0.0

LkCEL b9000. 2.700 287900. 21. b0169. 32. 4031. 1,3 18b.6 0. 1501. 0. 6.99 -0.209 0.0

Ut O ENT 69000. 2.282 2b676bb. 193. bU' 3. 132. 4163. 11.9 200.5 0. 1501. 0. 7.97-0.124 0.0

L LkUlSE 70000. 2.700 287691. 548. b090l. 36. 4200. 1.4 201.9 0. -1201. 0. 6.97 0.566 0.0

LUIWL 5000. 0.414 287143. 531. b1441. 0. 4200. 5.0 206.9 0. -1101. 0. 9.80 0.218 0.0

KESl O0. 0.0 266612. 0. 1--441. O. 4200. 0.0 206.9 0. 0. U. 0.0 0.0 0.0

KLSLI 0. 0.0 26612. 0. 81441. -4200. 0. **** 0.0 0. 0. 0. 0.0 0.0 0.0

kESLKVE 0. 0.0 2b6812. 5701. 67142. 0. 0. 0.0 0.0 0. 0. 0. 0.0 0.0 0.0

CLImb 0. 0.200 280912. 57i. b7720. 3. 3. 0.7 0.7 0. 1209. O. 8.41 0.375 0.0

u LLIML 1500. 0.505 2b0333. 3343. 910t4. 102. 105. 13.4 14.2 0. -1101. O. 9.10 0.304 0.0

S0 CRuISE 36000. 0.900 276990. 1457. 92521. 90. 195. 10.5 24.6 0. -1201. 0. 9.67 0.293 0.0

UtSCLNT 3b000. 0.900 275532. 119. 92640. 50. 245. 7.1 31.7 0.. 1501. - 0. 9.07 -0.169 0.0

LKUISL 30000. 0.900 275413. 248. 92088. 15. 260. 1.6 33.5 0. -1201. 0. 9.66 0.292 0.0

CkUlSt 15000. 0.503 27bSo5. 3072. 95960. 0. 260. 30.0 63.5 0. -1101. 0. 9.96 0.224 0.0

UGckHW= 36b054.0 FUEL A= 95959.6 FULL R= 95960.3



r c(L 170-i6 Lh2-ASl --~ iTWbFAN ENGINEIS

T/C AR I/S T/W

o3
Im 3.00 1.62 53.5 0.500

WE I GH I S TAT E ME NT

WLIGh1(POUNUS) WEIGH1 FRACTION (PERCENT)

TAK-OFF WEIGHT I 368054.)
FULL AVAILAULE 95960. FUEL 26.07
ZLkU FUkL WEIGHT 1 272094.)
PA_ LUA L H 49000. PAYLOAD . 13.31
UPtRAIING-WEIGtl i 223094.

UPEKAIING ITEMS 5356. UPERATING ITEMS 2.73
STANDAK( 11EMl 4678.

EMPIY Wkllhl 21305o.)
IkNbG 47205.

IAIL b913.
6bY 44646. STRUCIUKE 33.51
LANJING GtAk 17201.
SUKFACE LUNIKOLS 4620.

td NALtLLE AND ENGINE SECTION 2734.
SPkUPULLIUN 5799o.) PRUPULSION 15.76

tWbEhT 01- LIFI ENGINES 0.
VELIUR CUNlkUL SYSTEM 0.
thbINLS 24890.
lhhUSl kEVLRSAL 0.
Alk INLUClIbN SYSTEM 9b54.
1UIL SY1EM 21927.
ENGINE CANIRULS + SIARTER 1324.

INS TALLN1S 1092.
VYUkAUL IL 2797.
ELELI.ILAL t5 9

3.
AVlbdILI. 1900. EQUIPMENT 8.62
FUkNISHINUS AND EUUIFMENT 11500.
ENVIht NMENL fL CONTOL SYSILM 76t0.
AUXILIAKY GLAR 1960.

A.H.P.*h ( 175618.) IOTAL I 100.00)

EtXLIS tULL CAPACITY - BODY -0.
fA.L , FUrL CA ALITY - WING O.
EALilS buuY LiNGbH - FI 0.0

bl h Lu 0 ALUMINUM



W E I G HIMWS MA T R I X

/ MATERIAL
ELtMENI/ AL 1IT. STEEL COMP. OtHER TOTAL

WING 2171. 40407. 944. 2927. 755. 47205.

TAIL 311. 6423. 69. 0. 111. 6913.

FUSEL 14554. 22948. 804. 1116. 5224. 44646.

L. G. 17. '300. 6605. 0. 6279. 17201.

NACELLE 52. 406. 909. 0. 0. 1367.

AI INDUCT 453. 8731. 99. 0. 572. 9654.

5. CILS 1109. 20b. 970. 69. 2264. 4620.

TU1ALS 1866b. 83423. 10400. 4112. 15203. 131607.

IUn



COST SUMMARY

RD AND E INVESTMENT DIRECT OPERATIONAL COST (DOC)

10TTAL* TOTAL* PER PROD
oA/C** C/SM*** PERCENT

"T PkOIulYPE AIkCRAFT 644.57 PRODUCTION AIRCRAFT 14390.07 47966.91 FLIGHT CREW 0.09816 5.49389

OLS16N EN61NEERIN6 803.61 PROUUCTION ENGINEERING 0.0 0.0 FULL AND OIL 0.73470 41.11995

-ULVLLPME-NI 151 ARTICLES 293.33 INSURANCE 0.13702 7.66855

FLIGHI TS1 b9.64 DEPRLCIATION 0.44085 24.67360

LKGINL DEVELUPMENT CRUISE b5t.9L MAINTENANLC 0.37600 21.04401

t61Nt DLVtLOPMENT LIFT 0.0
TOTAL DOC 1.76671 100.000

AVIUNILS btVELUbMENT 0.0

M^INTkNANLkE IAINEK DLVLL 0.0 MAINTENANCE RkAINERS 0.0 0.0. INDIRECT OPERATIONAL COST IOC)

UPLkAlvu TRAINEk LVELOP 0.O OPERATOR IkAINERS 0.0 0.0 CSM*** PERCENT

UDLVELL.MEN L UOLING 700.b6 PRUOUCIION IOLLING 421.57 1405.23 SYSTEM 0.0031b 0.39730

td stiLlAL Sul'PukT EUUIPMENT 12.89 SPLC1AL SUPORT EQUIPMENT 719.50 239b.34 LOCAL 0.09340 11.66091

VL _6._6_513_0.64028

o1 LVLLUMENTl SPAKES 100.0 PkCUULTIUN SPARES 2160.90 7203.00 AIRCRAFT CONTROL 0.00513 0.64028

IkTENILAL GAIA 16.52 1LCIiNICAL UA1A 8b.46 294.67 CABIN ATTENDANT 0.07064 8.81928

FOOD AND BEVERAGE 0.02441 3.04780

I1 TulL RUlE . 3320.49 TOTAL INVESTMENT 17780.50 5926b.34
PASSENGER HANDLING 0.13656 17.04900

MISC. DATA RETURN ON INVESTMENT (ROI) CARGO HANDLING 0.0049 1.05977

kANGE (ST. MILES) 4833.04 TOTAL REVENUE PLR YEAR * 469.73 OTHER PASSENGER EXPENSE 0.33550 41.88589

bLOLK SPEED IMPH) 1306.71 TUTAL EXPEN k PER YEAR * 410.b4 OTHER CARGO EXPENSE 0.00278-0.34680

EARL (I) 24b.72 T1IAL INVESTMENT * 1014.47 GENERAL + ADMINISIR. 0.12089 15.09296

INCL. lACILITIES

FLEET SIZL 14.42 R01 bEFOHE LAXES 11.61
TOTAL IOC 0.80098 100.000..

PkUrULclUN bASIS 300.00 RUI AFTER TAXFS 6.04'

REV.PASSENG.IIL.PE.R YRI 1.ul

AVEt. CARGO PER FLIGHT 2000.00 * - MILLIONS' OF DOL RS.
** - 1000 OF DOLLARS PER PRODUCTION A/C

-FLUI Pk A/C PEH YEAR 973.33 *** - CENIS PER SEAT MILE



'0 RESEARCH DEVELOPMENT TEST AND EVALUATION IRDTE)

DEVELOPMENT AND DESIGN LUNTRACTOR TEST AND EVALU DEVELOPMENT AIRCRAFT TOTAL RDT AND E

AIRFRAME 1308.24 333.02 443.60 2084.86

j0 EN6INLERING
huUKS 40230. 7508. 2210. 49948.

LAbUk RATE b.17 b.17 6.17 8.17

OVEKHEAU KATE 9.20 9.20 9.20 9.20

IOIAL b69.79 130.42 38.39 867.59

1UULING
thLUKS 30201. 1842. 3683. 35726.

LALUR KAl t .09 6.09 6.09 6.09

UVLkHtAL RATE 12.36 .2.36 12.36 12.36

TUIAL 609.45 33.98 67.96 711.38

MANU-ALTUR ING
hutiK 7367. 14733. 22100.

LAbUR kAIL 5.12 5.12 5.12

UVLRHLAU HAlE 10.72 _10.72__ 10310.72..

.UIAL 116.69 233.38 350.06

QUILI1Y LUNIRUL
ftLUkb 1473. 2947. 4420.

LADbH RHAE 6.29 6.29 6.29

- (VENHIAD HAIL 10.72 10.72 10.72

l UlAL 25.06 50.12 75.18

MAitklAL
RAW ANb PkChSU 7.77 15.55 23.32

PUK.LHtASLD LsCUIP 14.44 26.t7 43.31

lUIAL 22.21 44.42 66.63

MISLLLLANLUUS
hUkS 295. 589. 884.

LAPbu RATE 5.12 5.12 5.12

UVLKhfAL KAtL 10.72 10.72 10.72

lOTAL 4.67 9.34 14.00

S ENGINL 658.98 65.89 724.86

C AVIUNJLS 0.0 2.00 2.00

PHUIFli(IA1KIkAML) 196.24 49.95 66.54 312.73

JNSUK.+IAXLS 44.36 44.36

S LAKRI N1Y 22.16 22.18

SULTUlAL 2163.45 382.98 644.57 3190.99

UItR IKIMS 129.50

ILlAL tIKlL) 3320.49



r
:; .° PRODUCTION

zx PRODUCTION YEARS

S2 3 4 5 6 7 8 9 10 TOTAL

AIRkFRAME 662.27 601.06 681.57 966.23 1046.35 970.96 916.47 875.06 842.02 814.74 8978.73

t~GtNEELKNG
HlUUkS 3103. 2673. 2829. 3006. 3177. 2879. 2671. 2514. 2368. 2285. 27525.

LAbO R RATE 6.17 b.17 .17.17 8.17 87 17 8.17 8.17 8.17

OVLHLAO KATE 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20

ITTAL 53.90 46.43 49.13 52.21 55.18 50.01 46.40 43.66 41.49 39.70 476.11

TULLING
tULuk3 3724. 3206. 3394. 3007. 3612. 3455. 3205. 3016. 2866. 2742. 33030.

LAt.OR kAlE b.09 C.09 6.U9 6.09 6.09 6.09 6. 09 6.09 o 6 .09 .

-VLkLAU HATE 12.36 12.36 12.36 12.36 12.36 12.36 12.36 12.36 12.36 12.36

O11AL 66.71 59.16 62.02 66.55 70.33 63.75 59.14 55.65 52.68 50.60 609.40

MAnU~-LIuRING
hLuRS 31033. 26731. 2b26o.. 30058. 31768. 26793. 26710. 25135. 23883. 22854. 275251.

LALUK kAlt 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12

LVLkHEA kAlE 10.72 10.72 10.72 10.72 10.72 10.72 10.72 10.72 10.72 10.72

lUIAL 491.56 423.42 446.05 476.12 503.20 456.07 423.09 396.14 378.31 362.01 4359.97

UUALlY CUNIKOL
hUUKS 6207. 5346. 5t57. 012. 6354. 5759. 5342. 5027. 4777. 4571. 55050.

LALUK RAlt 6.29 6.29 t.292 6.29 6.29 6.29

S UVLHLAU AE 10.72 10.72 10.72 10.72 10.72 10.72 10.72 1.72 72 10.7 102 10.72 10.72 10.72

lOIAL 105.57 90.94 96.23 102.26 10e.07 97.95 90.67 85.51 81.25 77.75 936.40

MAILKIAL

KAw AND PuKLH 43.00 57.45 72.07 67.52 102.00 99.73 96.02 96.66 95.54 94.57 847.16

PUkLtAS3LD EMUIP 79.6b 100.70 134.95 lo2.53 169.43 165.21 182.04 179.52 177.42 175.64 1573.29

lulAL 122.66 164.15 207.62 250.04 291.43 264.93 260.06 276.16 272.96 270.21 2420.45

MiLLELLANLUS_
hoRS 1241. 10o9. 1131. 1202. 1271. 1152. 1066. 1005. 955. 914. 11010.

LAbUR KATE 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12

UVLktEAD KAIL 10.72 10.72 10.72 10.72 10.72 10.72 10.72 10.72 10.72 10.72

IOlAL 19.66 16.94 17.92 19.04 20.13 16.24 l.92 15.93 15.13 14.48 174.40

tkblNLS 167.27 19o.53 235.07 272.19 307.64 293.71 283.49 275.47 268.91 263.37 2563.64

AVIONICS 6.00 9.00 12.00 15.00 16.00 16.00 18.00 18.00 18.00 18.00 150.00

PROFi 129.34 120.16 132.24 144.93 157.25 145.64 137.47 131.26 126.30 122.21 1346.81

INSUR.*IAXES ab.23 60.11 bb.16 96.62 104.83 97.10 91.65 67.51 64.20 61.47 897.87

WAkKANIY 43.11 40.05 44.0 46.31 52.42 48.55 45.62 43.75 42.10 40.74 448.94

OlAL I-LYAWAY 1294.22 1246.90 1393.12 1543.29 1666.50 1573.96 1492.90 1431.05 1381.53 1344.63 14390.07



RATE OF RETURN ON INVESTMENT FOR 4074 Kilometer (2200 n.mi.) MILE RANGE

X YEAR AVG NO AIRCRAFT AVERAGE CUMULA- AVERAGE REVENUE INTEREST OPERATING CASH ROI
SAIRCRAFT ADDFD INVFSTMIENT TIVF BOOK EXPENSE EXPENSE INFLOW

m DURING DURING DURING DEPRE- VALUE OF
YEAR YEAR YEAR CIATION COMPANY

SM SM $M $M $M $M $M

1 n.65 1.0n 46.79 3.34 43.45 15.79 2.25 17.01 -0.11 -2.79

2 1.69 1.n4 121.F65 1?.3 lnq.62 41.n7 5.48 44.21 0.06 -2.87
3 ?.73 1.n4 196.52 26.07 17n.45 66.34 8.35 71.42 0.6n -2.98

4 3.77 1.0n 271.38 45.45 225.93 91.61 1n.87 98.63 1.49 -3.11

5 4.81 1.fh 36 .?5 7n.19 276.nF 116.88 13.n3 125.84 2.74 -3.25
6 5.85 1.h 4?!.1.1 lnn.9F 32n.9 5 142.15 1.8?9 153.n5 4.36 -3.4n
7 6.q89 !.n 4Q.nP I 5 36 n.'8 167.h? IF6.6 18Rn.9.F 6.33 -3.56

S 7.0.3 ,nk4 Sn. P 176.l7 3qh. 7 19q.F0 17.3h 207.47 8.66 -3.75

.n P.n7 .nf 64r.7n 27?.~n h?3.12 217.96 1P.nF 23.F7 11.35 -3.95
in In.nl 1.n 7)n.7 274.nF 4F .51 2431 3 1P.2 26F.PP 14.4n -. 8

AV FRArOF ROI COWR TIe Trc YcAFP DCFIO=-.cp0?

bd



jr
I0 RATE OF RETURN ON INVESTMENT FOR 7778 Kilometer (4200 n.mi.) MILE RANGE

YEAR AVG NO AIRCRAFT AVERAGE CUfiULA- AVERAGE REVEMUE INTEREST OPERATING CASH ROI0 AIRCRAFT ADDED INVESTI!ENT TIVE BOOK EXPENSE EXPENISE INFLOW
DURING .DURING DURING DEPRE- VALUE OF
YEAR YEAR YEAR CI ATION COMIANY

$m $M $11 $II $ $, $M ,

1 1.00 1.6.0 71.98 5.14 66.84 29.30 3.4.6 25.63 5.25 5.3.4
2 2.60 1.60 187.16 18.51 168.65 76.1.8 8.4.3 66.6,4 13.9.5 5.34
3 4.2.0 1.6.0 302.34 40.11 262.23 123.06 12.85 107.64 22.93 5.41
4" 5.8.0 1.60 417.51 69.9.3 347.58 169.9.4 16.7,2 148.6,5 322.20 5.49
5 7.40 1.60 532.69 107.98 424.71 216.82 20.0Q4 189.6.5 41.7.5 5.59
6 9.00 1.60 647.86 154.25 493.6.1 263.70 22.80 230.66 51.6.0 5.7.0
7 10.6.0 1.60 763.04 208.76 554.28 310.5.8 25.02 271.67 61.73 5.8.2
8 12.20 1. 6.0 878.22 271.49 606. 73 357.46 26.6.7 312.6.7 72.15 5.95
9 13.80 1.60 993.39 342.4.4 650.95 404.3.4 27.78 353.68 82.85 6.10
10 15.40 1.60 1108.57 421.63 686.94 451.2.2 28.3.3 394.6.8 93.8&5 6.2.6

AVERAGE ROI OVER THE TEN YEAR PERIOD= 5.84,

bI

0

'

wA



APPENDIX C

STRESS ANALYSIS

OF

,CANDIDATE TANK DESIGNS
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TABLE OF NOMENCLATURE

APPENDIX C

C = Distance from neutral axis to outer shell

C = Stability constant 62.5 X 10-

D = Fuselage diameter

Def f  = Effective diameter

E = Young's modulus

FTU = Ultimate allowable stress

f = Applied stress

fb = Bending stress

f = Tank stress at maximum altitude
ALT
fc = Compressive stress

fCCR = Compressive buckling stress

fs = Shear stress

fS.L. = Tank stress.at sea level

fSCR = Shear buckling stress

ft = Tension stress

ftL  = Longitudinal tension stress

I = Moment of inertia

Kt = Quality factor for fatigue

L Ring spacing

LIM = Limit

M = Bending Moment

M.S. = Margin of safety

n = Vertical load factor

p = Pressure

P = Load

PT = Tension load per inch

R = Radius

p = Radius of gyration

S.L. = Sea level

Sa = Alternating stress

Sm = Mean stress

C-2
LOCKHEED
CALI ORN- O OMP-N



TABLE OF NOMENCLATURE (Continued)

APPENDIX C

t = Skin thickness

te = Effective thickness of shell

ULT = Ultimate

W = Load
n

z
w = Distributed load

C-3
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APPENDIX C

STRESS ANALYSIS OF CANDIDATE TANK DESIGNS

NON-INTEGRAL TANKS

At maximum tank dia.

Tank Press. = 23 psia 70.4

at S.L.

P + 23.0 - 14.7 = 8 .3 psi PT

at 75,000'

P = 23.0 - 0.5 + 22.5 psi
1.103 PT

For tank shell

t = 0.05

fS.L. 8.3 x 70.4 = 11,700 psi (lim) P T
0.050

70.4

fALT. 0.x 70.50 = 31,700 psi (lim)
0.050

fS.L. = 2 x 11,700 = 23,400 psi (ult.)

fALT = 2 x 31,700 = 63,400 psi (ult.)

For 221c9-T87 aluminum alloy

FTU = 64,000 psi (Mil Hndbk 5)

M.S. = 64,000/63,400 - 1 = 0.01

For welded joints:

.080 L.060

LOCKHEED
CALIFORNIA COMPANY



= 22.5 x 2 x 70.4
S0.080 39600 psi

Strength Across Welds

Ftu = 41,000 psi (Ref. Aerospace Structural Metals Hndbk. Code 3205 Pg.5)

M.S. = 41,000/39,600 - 1 = 0.03

FATIGUE CONSIDERATIONS FOR BASIC SHELL

For the following refer to Lockheed Engineering "Structural Life-Assurance

Manual."

For 50,000 hr. life assume average flight at 3 hr.

No. cycles = 50,000/3 = 16,700

(Ref. SLM #4 Pg. 5)

31,700 + 11,700=Mean Stress, Sm  31,700 + 11,700 21,700 psi
2

Alternating Stress, Sa 37 21 = 10,000 psi

0-5.
LOCKHEED
CALIFORNIA COMPANV



For mismatched welded joints in a cylindrical pressure vessel (Ref. SLM 7b

Pg. 73)

Assume d/t = 0.30

Kt = 2 for longitudinal joints (SLM 7b Pg. 72)

For this Kt and the above stress values the life exceeds 100,000 cycles for

standard aluminum alloy. (Ref. SLM No. 16b, Pg. 5)

The above is based on the basic shell stresses and fatigue properties since

they are not available for the welded material, but it is felt that it repre-

sents a good approximation. The scatter factor of 6 and the disregarding of

the beneficial effects of the cryogenic temperatures serve to give confidence

of a safe life for the tank.

TANK SHEAR AND BENDING

I750

166 418 166

Dimensions For Front Tank (approximate)

Tank and insulation is 19.1 percent of fuel weight.

Volume of forward tank = 10,479 ft.3

LOCKHEEDCALIFORNIA CO AN



hz = 2.5 g

w = 10,479 x 1.191 x 4.42 x 2.5 x 1.5 = 207,000 lb (ult)
nz

w = 207,000/750 = 276 lb/in.

M 1  M1

M
2

M = 3.81 x 106 in.lb

6
M2 = -2.23 x 10 in.lb

FORWARD TANK

Approximate dimensions at forward mount

I = 0.808 x 105 in.
65

f mc
c I --

3.81 x 106 x 88 -

0.808 x 10

= 4,150 psi
t = .05 IN.

C-7
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TANK SHEAR

57500

45900

45900

57500

fs 57500 = 4,160 psi
2 x 0.785 x 176 x 0.05

COMPRESSION BUCKLING STRESS

0.3Et 0.3 x 107 x 0.05R 65

= 2,300 psi

SHEAR BUCKLING STRESS

O.1Et 0.1 x 107 x 0.05fSCR -
R 65

= 770 psi

The shear and compressive buckling stresses are below the applied stresses but

the shell will be supported by the insulation applied to the surface. The

shell will also be stabilized by the internal pressure and it is not antici-

pated that there will be a loss of pressure and insulation at the same time.

LOCKHEED C-8
CALIFORNJA COMPAN



INTEGRAL TANK

A typical section is at F.S. 2710 - SHELL

near the forward end of the aft tank. 72.4"

I = 3.14 x 106 te in.4

For this station CROSS TIE3

M = 114 x 106 in.-lb (Ref. Pg.

Maintaining a tension and compression

stress level of 40,000 psi

SHELL

Mc = 40,000 psi
I

te = 114 x 106 x 1.5 x 111.4 0.152 in.

3.14 x 10 x 40,000 S 2710

Additional thickness is required on the upper surface to take pressure induced

longitudinal tension loads.

ftl PR _ 22.5 x 1.5 x 72.4= 40,000 psi
2t 2t

t = 72.4 x 22.5 x 1.5 = 0.031
2 x 40,Q00

Note: When bending and pressure stresses are added, a multiplying factor of

1.5 instead of 2 is used for the pressure.

Total Upper Surface Effective Thickness = 0.152 + 0.031 = 0.183 in.

C-9
LOCKHEED
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TYPICAL UPPER SURFACE INTEGRALLY STIFFENED SKIN SECTION

4.00

I L.100

1.50

1.1F5 5

INTERNAL SUPPORT RINGS

To ensure against general instability of the load carrying surfaces the fol-

lowing ring stiffness is required:

Cf MD2

(EI)RING L

M = Bending Moment

D = Fuselage Diameter

L = Ring Spacing

C = A Constant 5 62.5 x 10-6

At F.S. 2710

M = 114 x 106 Def f = 200 in.

L = 20 in. 1.25

-6 6 2 50o
N 62.5 x 10-6 x 114 x lO6 x 200 = 1.36 in.

20 x 10.5 x 106 .09

A ring cross section as shown fulfills

this requirement.

C-10
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CROSS TIE

pT

1.103 PT

P
R= 72.4"

SECTION AT F.S. 2710

For AP = 22.5 psi

PT = 22.5 x 2 x 72.4 = 3,260 lb/in.

Cross tie load = 1.103 x 3260 = 3600 lb/in.

The cross tie member acts as. a walkway in addition to transmitting the

above load: 1000 LB.

124

C11

PL _1 000 x 124
M =- = 4 - 31,000 in.-lb.

C -11
LOCKHEED
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This bending moment is spread over 12 inches of sandwich panel.

1.25

10-.032

31000 65,000 psi
fb 12 x 1.25 x 0.032

3,600f 3,6 56,000 psit 2 x 0.032

For 2024-T861

FTU = 65,000 psi (Ref. Mil Hndbk 5,
Table 3.2.3.0(e))

M.S. = 65,000 - 1 = 0.00 (Bending)
S65,000

M.S. = 65,000 - 1 = 0.16 (Tension)

BAFFLES

Baffles are spaced at 200 inches and are designed by 9 g(nx ) crash condition

4.42 x 9 x 200
P 1,728 .6o psi

LOCKHEED C-12
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Baffles are 0.020 aluminum membrane.

Edge Stress:
3

f = 0.328 R2 (Ref. Roark, Pg. 215)

f 0.328
0.022

= 46,900 psi

Peripheral Ring Axial Load

P = 46,900 x 0.02 x 72.4 = 67,900 lb.

Stiffness Requirement

E PR (Ref. Roark, Pg. 306)
EI 3

46,900 x 0.02 x 72.43 1.13 in.4

3 x 10.5 x 106

A ring of the following dimensions fulfills the requirements

.22

C-13
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TRANSITION STRUCTURE (For Integral Tanks)

Forward Transition of Aft Tank

P

40" TOP OR BOTTOM
VIEW OF TRUSS
STRUCTURE

AIRCRAFT

20"

F.S. 2710

I 3.14 x 106 te C = 111.4 in.

M = 114 x 106 in.-lb (lim)

Mc 1.5 x 11 4 x 106 x 11.4

3.14 x 106 te

1.5 x 114 x 106 x 111U.4
w = fte =

3.14 x 106

w = 6,070 lb/in.

P = 40 x 6,070 = 242,500 lb

Load In Strut

242 500P =  -2 5 6 
= 134,500 lb

L2 cos 25.66

LOCKHEED -14
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STRUT SIZE (MAXIMUM)

The strut design is based on the configurations depicted in the report

"Fiberglass Supports for Cryogenic Tanks," NASA CR-120937, IVISC-D281476. The

strut stress is limited to 30,000 psi (ult) for fatigue considerations.

Length = 40/cos 25.660 = 44.4 in.

CROSS SECTION

A = 4.712 in.2

2.50" 3.50"

p = 1.056 in.

E = 6.5 x 106

f = 140,000/4.712 = 29,700 psi

Tension M.S. = 30,000/29,700 - 1 = 0.01

C 2EA 9.85 x 6.5 x 106 x 4.717 171,000 b

PCOL (L/p)2 (44.4/1.056)2

Compression M.S. = 171,000/140,000 - 1 = 0.22

LOCKHEED


